Store:LPLde04
Probabilistisch-kausale Analyse
Aus diesen Prämissen geht hervor, dass die klinische Diagnose nach der sogenannten hypothetisch-deduktiven Methode, DN genannt, gestellt wird[1] (deductive-nomological model[2]).Dies ist jedoch unrealistisch, da das in der klinischen Entscheidungsfindung verwendete medizinische Wissen kaum kausaldeterministische Gesetzmäßigkeiten enthält, um kausale Erklärungen zu ermöglichen und damit ua im Fachkontext klinische Diagnosen zu formulieren. Lassen Sie uns versuchen, den Fall unserer Mary Poppins erneut zu analysieren, diesmal versuchen wir es mit einem probabilistisch-kausalen Ansatz.
Betrachten wir eine Anzahl Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} von Personen, einschließlich Personen, die über orofaziale Schmerzen berichten und im Allgemeinen eine Knochendegeneration des Kiefergelenks haben. Es kann jedoch auch andere scheinbar unabhängige Ursachen geben. Wir müssen die „Relevanz“, die diese kausalen Ungewissheiten für die Bestimmung einer Diagnose haben, mathematisch übersetzen.
Die beiläufige Relevanz
Dazu betrachten wir den Grad der kausalen Relevanz Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (cr)} eines Ereignisses in Bezug auf ein Ereignis , wobei gilt:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_1} = Patienten mit Knochendegeneration des Kiefergelenks
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2} = Patienten, die über orofaziale Schmerzen berichten
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_3} =Patienten ohne Knochendegeneration des Kiefergelenks.
Wir verwenden die bedingte Wahrscheinlichkeit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A \mid B)} , also die Wahrscheinlichkeit, dass das Ereignis Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} erst eintritt, nachdem das Ereignis Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} bereits eingetreten ist.
Mit diesen Prämissen ist die kausale Relevanz Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle cr} der Patientenstichprobe Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} :
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle cr=P(E_2 \mid E_1)- P(E_2 \mid E_3)}
Wo
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(E_2 \mid E_1)} gibt die Wahrscheinlichkeit an, dass einige Personen (von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} berücksichtigten Personen) an orofazialen Schmerzen leiden, die durch eine Knochendegeneration des Kiefergelenks verursacht werden,
während
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(E_2 \mid E_3)} gibt die Wahrscheinlichkeit an, dass andere Personen (immer unter Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} berücksichtigt) an orofazialen Schmerzen leiden, die durch etwas anderes als eine Knochendegeneration des Kiefergelenks bedingt sind.
Da aller Wahrscheinlichkeit nach Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A \mid B)} ein Wert zwischen Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 } und Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 } ist, wird der Parameter Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (cr)} eine Zahl zwischen Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1 } und Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 } sein
Die Bedeutungen, die wir dieser Zahl geben können, sind wie folgt.
- wir haben die extremen Fälle (die in Wirklichkeit nie vorkommen), die sind:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle cr=1} was darauf hinweist, dass die einzige Ursache für orofaziale Schmerzen die Knochendegeneration des Kiefergelenks ist,
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle cr=-1} was darauf hindeutet, dass die Ursache für orofaziale Schmerzen niemals eine Knochendegeneration des Kiefergelenks ist, sondern etwas anderes,
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle cr=0} was darauf hinweist, dass die Wahrscheinlichkeit, dass orofaziale Schmerzen durch Knochendegeneration des Kiefergelenks oder auf andere Weise verursacht werden, genau gleich ist,
- und die Zwischenfälle (die die realistischen sind)
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle cr>0} was darauf hindeutet, dass die Ursache für orofaziale Schmerzen eher eine Knochendegeneration des Kiefergelenks ist,
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle cr<0} was darauf hindeutet, dass die Ursache für orofaziale Schmerzen eher nicht die Knochendegeneration des Kiefergelenks ist.
Zweiter klinischer Ansatz
(fahren Sie mit der Maus über die Bilder)
Also sei es dann Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(D)} die Wahrscheinlichkeit, in der Stichprobe unserer Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} Personen Personen zu finden, die die Elemente aufweisen, die zu der oben genannten Menge Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D=\{\delta_1,\delta_2,...,\delta_n\}} gehören.
Um die Informationen aus diesem Datensatz zu nutzen, wird das Konzept der Aufteilung der kausalen Relevanz eingeführt:
Die Aufteilung der kausalen Relevanz
- Sei immer Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} die Anzahl der Personen, für die wir die Analysen durchführen müssen, wenn wir (basierend auf bestimmten Bedingungen, wie unten erklärt) diese Gruppe in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} Teilmengen Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_i} mit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1,2,\dots,k} aufteilen, wird ein Cluster erstellt, der als "Partitionsmenge" Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} bezeichnet wird:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi = \{C_1, C_2,\dots,C_k \} \qquad \qquad \text{mit} \qquad \qquad C_i \subset n , }
wobei mit der Symbolik Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_i \subset n } anzeigt, dass die Unterklasse Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_i} in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} enthalten ist. Die Partition Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} muss, um als Partition mit kausaler Relevanz definiert zu werden, diese Eigenschaften haben:
- Für jede Unterklasse Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_i} muss die Bedingung Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle rc=P(D \mid C_i)- P(D )\neq 0, } gelten, dh die Wahrscheinlichkeit, in der Untergruppe Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_i} eine Person zu finden, die die zur Menge Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D=\{\delta_1,\delta_2,...,\delta_n\}} gehörenden Symptome, Krankheitszeichen und Elemente aufweist. Eine solche kausal relevante Partition wird als homogen bezeichnet.
- Jede Teilmenge Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_i} muss „elementar“ sein, d. h. sie darf nicht weiter in andere Teilmengen unterteilt werden, denn wenn diese existierten, hätten sie keine kausale Bedeutung.
Nehmen wir nun beispielsweise an, dass die Populationsstichprobe Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} , zu der unsere gute Patientin Mary Poppins gehört, eine Kategorie von Probanden im Alter von 20 bis 70 Jahren ist. Wir nehmen auch an, dass wir in dieser Population diejenigen haben, die die Elemente präsentieren, die zu der gehören Datensatz Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D=\{\delta_1,.....\delta_n\}} die den oben genannten Labortests entsprechen und precisa in 'The logic of classical language'.
Nehmen wir an, dass wir in einer Stichprobe von 10.000 Probanden von 20 bis 70 eine Inzidenz von 30 Probanden Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(D)=0.003}
haben, die klinische Anzeichen von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta_1}
und Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta_4 }
zeigen. Wir haben es vorgezogen, diese Berichte zur Demonstration des probabilistischen Prozesses zu verwenden, da in der Literatur die Daten bzgl Klinische Anzeichen und Symptome für Kiefergelenkserkrankungen weisen unserer Meinung nach eine zu große Variation sowie eine zu hohe Inzidenz auf.[3][4][5][6][7][8]
Ein Beispiel für eine Partition mit vermuteter Wahrscheinlichkeit, bei der eine Kiefergelenksdegeneration (Grad.TMJ) in Verbindung mit Kiefergelenkserkrankungen (TMDs) auftritt, wäre die folgende:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(D| Deg.TMJ \cap TMDs)=0.95 \qquad \qquad \; } | Wo | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \C_1 \equiv Deg.TMJ \cap TMDs} | |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(D| Deg.TMJ \cap noTMDs)=0.3 \qquad \qquad \quad } | Wo | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_2\equiv Deg.TMJ \cap noTMDs} | |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(D| no Deg.TMJ \cap TMDs)=0.199 \qquad \qquad \; } | Wo | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_3\equiv no Deg.TMJ \cap TMDs} | |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(D| noDeg.TMJ \cap noTMDs)=0.001 \qquad \qquad \;} | Wo | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_4\equiv noDeg.TMJ \cap noTMDs} |
- «Eine homogene Partition stellt das bereit, was wir gewöhnlich Differentialdiagnose nennen.»
Klinische Situationen
Diese bedingten Wahrscheinlichkeiten demonstrieren, dass jede der vier Unterklassen der Partition kausal relevant für die Patientendaten in der Bevölkerungsstichprobe ist. Angesichts der oben erwähnten Partition der Referenzklasse haben wir die folgenden klinischen Situationen:
- Mary Poppins Degeneration des Kiefergelenks Kiefergelenkserkrankungen
- Mary Poppins Degeneration des Kiefergelenks keine Kiefergelenkserkrankungen
- Mary Poppins keine Degeneration des Kiefergelenks Kiefergelenkserkrankungen
- Mary Poppins keine Degeneration des Kiefergelenks keine Kiefergelenkserkrankungen
Um zu der obigen endgültigen Diagnose zu gelangen, führten wir eine probabilistisch-kausale Analyse des Gesundheitszustands von Mary Poppins durch, deren Ausgangsdaten waren.
Im Allgemeinen können wir von einem logischen Prozess sprechen, in dem wir die folgenden Elemente untersuchen:
- ein Individuum:
- seinen Anfangsdatensatz
- eine Populationsstichprobe , zu der es gehört,
- eine Basiswahrscheinlichkeit
An dieser Stelle sollten wir zu spezialisierte Argumente einführen, die den Leser vom Thema ablenken würden, die aber eine hohe epistemische Bedeutung haben, für die wir versuchen werden, den am besten beschriebenen logischen Faden des Analysandum/Analysans-Konzepts herauszuziehen. Die probabilistisch-kausale Analyse von ist dann ein Paar der folgenden logischen Formen (Analysandum / Analysans[9]):
- Analysand : ist eine logische Form, die zwei Parameter enthält: Wahrscheinlichkeit , eine Person auszuwählen, die die Symptome und Elemente hat, die zur Menge gehören, und die generische Person , die für diese Symptome anfällig ist.
- Analysator : ist eine logische Form, die drei Parameter enthält: die Partition Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} , die generische Person Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} , die zur Populationsstichprobe Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} gehört, und Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle KB} (Wissensbasis), die einen Satz von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n>1} Aussagen zur bedingten Wahrscheinlichkeit enthält.
Beispielsweise kann daraus geschlossen werden, dass die definitive Diagnose die folgende ist:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(D| Deg.TMJ \cap TMDs)=0.95} bedeutet das, dass unsere Mary Poppins zu 95% von CMDs betroffen ist, da sie zusätzlich zu den positiven Daten eine Degeneration des Kiefergelenks hat Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D=\{\delta_1,.....\delta_n\}}
- ↑ Sarkar S, «Nagel on Reduction», in Stud Hist Philos Sci, 2015».
PMID:26386529
DOI:10.1016/j.shpsa.2015.05.006 - ↑ DN model of scientific explanation, also known as Hempel's model, Hempel–Oppenheim model, Popper–Hempel model, or covering law model
- ↑ Pantoja LLQ, De Toledo IP, Pupo YM, Porporatti AL, De Luca Canto G, Zwir LF, Guerra ENS, «Prevalence of degenerative joint disease of the temporomandibular joint: a systematic review», in Clin Oral Investig, 2019».
PMID:30311063
DOI:10.1007/s00784-018-2664-y - ↑ De Toledo IP, Stefani FM, Porporatti AL, Mezzomo LA, Peres MA, Flores-Mir C, De Luca Canto G, «Prevalence of otologic signs and symptoms in adult patients with temporomandibular disorders: a systematic review and meta-analysis», in Clin Oral Investig, 2017».
PMID:27511214
DOI:10.1007/s00784-016-1926-9 - ↑ Bonotto D, Penteado CA, Namba EL, Cunali PA, Rached RN, Azevedo-Alanis LR, «Prevalence of temporomandibular disorders in rugby players», in Gen Dent».
PMID:31355769 - ↑ da Silva CG, Pachêco-Pereira C, Porporatti AL, Savi MG, Peres MA, Flores-Mir C, De Luca Canto G, «Prevalence of clinical signs of intra-articular temporomandibular disorders in children and adolescents: A systematic review and meta-analysis», in Am Dent Assoc, 2016». - PMCID:26552334
DOI:10.1016/j.adaj.2015.07.017 - ↑ Gauer RL, Semidey MJ, «Diagnosis and treatment of temporomandibular disorders», in Am Fam Physician, 2015».
PMID:25822556 - ↑ Kohlmann T, «Epidemiology of orofacial pain», in Schmerz, 2002».
PMID:12235497
DOI:10.1007/s004820200000 - ↑ Westmeyer H, «The diagnostic process as a statistical-causal analysis», in APA, 1975».
DOI:10.1007/BF00139821
This is an Open Access resource!