Difference between revisions of "Store:QLMde14"
Gianfranco (talk | contribs) (Created page with "===8.2. Biological functions in the quantum Markov framework=== We turn to the open system dynamics with the GKSL-equation. In our modeling, Hamiltonian <math>\widehat{\mathcal{H}}</math> and Lindbladian <math>\widehat{{L}}</math> represent some special ''biological function'' <math>F</math> (see Khrennikov et al., 2018) for details. Its functioning results from interaction of internal and external information flows. In Sections 10, 11.3, <math>F</math> is some ''...") |
Tags: Mobile web edit Mobile edit Visual edit |
||
Line 1: | Line 1: | ||
===8.2. | ===8.2. Biologische Funktionen im Quanten-Markov-Rahmen=== | ||
Wir wenden uns mit der GKSL-Gleichung der offenen Systemdynamik zu. In unserer Modellierung Hamiltonian <math>\widehat{\mathcal{H}}</math> und Lindbladian <math>\widehat{{L}}</math> stellen eine besondere biologische Funktion dar <math>F</math>(siehe Khrennikov et al., 2018) für Details. Seine Funktionsweise ergibt sich aus dem Zusammenspiel von internen und externen Informationsflüssen. In den Abschnitten 10, 11.3, <math>F</math>ist eine psychologische Funktion; im einfachsten Fall <math>F</math> steht für eine gestellte Frage <math>S</math> (sagen wir ist ein Mensch). In Abschnitt 7, <math>F</math> ist die Genregulation des Glucose/Lactose-Stoffwechsels im Escherichia coli-Bakterium. In den Abschnitten 9, 11.2, <math>F</math> stellt den Prozess der epigenetischen Mutation dar. Symbolisch biologische Funktion <math>F</math>wird als Quantenobservable dargestellt: Hermitianischer Operator <math>\widehat{F}</math> mit der Spektralzerlegung <math>\widehat{F}=\sum_xx\widehat{E}^F(x)</math>, wo <math>x</math> Label-Ausgänge von <math>F</math>. Die Theorie der Quanten-Markov-Zustandsdynamik beschreibt den Prozess der Erzeugung dieser Ausgaben. | |||
Im mathematischen Modell (Asano et al., 2015b, Asano et al., 2017b, Asano et al., 2017a, Asano et al., 2015a, Asano et al., 2012b, Asano et al., 2011, Asano et al ., 2012a), die Ausgänge der biologischen Funktion | |||
{| width="80%" | | {| width="80%" | | ||
Line 11: | Line 11: | ||
|} | |} | ||
so dass es der spektralen Zerlegung von entspricht <math>\widehat{F}</math>,d.h. | |||
{| width="80%" | | {| width="80%" | | ||
Line 20: | Line 20: | ||
|} | |} | ||
wo | |||
{| width="80%" | | {| width="80%" | | ||
Line 29: | Line 29: | ||
|} | |} | ||
Das bedeutet, dass <math>\widehat{\rho}_{steady}</math> ist diagonal in einer orthonormalen Basis, die aus Eigenvektoren von besteht <math>\widehat{F}</math>. Dieser Zustand, oder genauer gesagt, diese Zerlegung des Dichteoperators <math>\widehat{\rho}_{steady}</math>, ist die klassische statistische Mischung der grundlegenden Informationszustände, die diese biologische Funktion bestimmen. Die Wahrscheinlichkeiten in der Zustandszerlegung (26) werden statistisch interpretiert. | |||
Stellen Sie sich ein großes Ensemble von Biosystemen mit dem Zustand vor <math>\widehat{\rho}_0</math> Interaktion mit der Umwelt <math>\varepsilon</math>. (Wir erinnern uns, dass die Interaktion mathematisch im Lindbladian kodiert ist <math>\widehat{{L}}</math>) Aus dieser Interaktion ergibt sich eine biologische Funktion <math>F</math> produziert Ausgabe <math>x</math>mit Wahrscheinlichkeit <math>p_x</math>.Wir bemerken, dass in den Operatortermen die Wahrscheinlichkeit ausgedrückt wird als <math>p_x=Tr\widehat{\rho}_{steady}\widehat{E}^F(x)</math> | |||
Diese Interpretation kann sogar auf ein einzelnes Biosystem angewendet werden, das viele Male auf dieselbe Umgebung trifft. | |||
Zu beachten ist dieser Grenzzustand <math>\widehat{\rho}_{steady}</math> drückt die Stabilität gegenüber dem Einfluss der Betonumgebung aus <math>\varepsilon</math>. Natürlich würde in der realen Welt der Grenzzustand niemals erreicht werden. Die mathematische Formel (25) beschreibt den Prozess der Stabilisierung, Dämpfung von Schwankungen. Aber sie würden mit der Zeit nie ganz verschwinden. | |||
Wir stellen fest, dass ein stationärer Zustand die stationäre GKSL-Gleichung erfüllt: | |||
{| width="80%" | | {| width="80%" | | ||
Line 46: | Line 46: | ||
|} | |} | ||
Es ist auch wichtig darauf hinzuweisen, dass im Allgemeinen ein stationärer Zustand der Quanten-Master-Gleichung nicht eindeutig ist, er hängt von der Klasse der Anfangsbedingungen ab. |
Latest revision as of 16:41, 16 April 2023
8.2. Biologische Funktionen im Quanten-Markov-Rahmen
Wir wenden uns mit der GKSL-Gleichung der offenen Systemdynamik zu. In unserer Modellierung Hamiltonian Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{\mathcal{H}}} und Lindbladian Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{{L}}} stellen eine besondere biologische Funktion dar Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} (siehe Khrennikov et al., 2018) für Details. Seine Funktionsweise ergibt sich aus dem Zusammenspiel von internen und externen Informationsflüssen. In den Abschnitten 10, 11.3, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} ist eine psychologische Funktion; im einfachsten Fall Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} steht für eine gestellte Frage Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} (sagen wir ist ein Mensch). In Abschnitt 7, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} ist die Genregulation des Glucose/Lactose-Stoffwechsels im Escherichia coli-Bakterium. In den Abschnitten 9, 11.2, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} stellt den Prozess der epigenetischen Mutation dar. Symbolisch biologische Funktion Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} wird als Quantenobservable dargestellt: Hermitianischer Operator Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{F}} mit der Spektralzerlegung Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{F}=\sum_xx\widehat{E}^F(x)} , wo Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} Label-Ausgänge von Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} . Die Theorie der Quanten-Markov-Zustandsdynamik beschreibt den Prozess der Erzeugung dieser Ausgaben.
Im mathematischen Modell (Asano et al., 2015b, Asano et al., 2017b, Asano et al., 2017a, Asano et al., 2015a, Asano et al., 2012b, Asano et al., 2011, Asano et al ., 2012a), die Ausgänge der biologischen Funktion
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{t \to \infty}\widehat{\rho}(t)=\widehat{\rho}_{steady}} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (25)} |
so dass es der spektralen Zerlegung von entspricht Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{F}} ,d.h.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{\rho}_{steady}=\sum_x p_x\widehat{E}^F(x)} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (26)} |
wo
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_x\geq\sum_xp_x=1} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (26)} |
Das bedeutet, dass Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{\rho}_{steady}} ist diagonal in einer orthonormalen Basis, die aus Eigenvektoren von besteht Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{F}} . Dieser Zustand, oder genauer gesagt, diese Zerlegung des Dichteoperators Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{\rho}_{steady}} , ist die klassische statistische Mischung der grundlegenden Informationszustände, die diese biologische Funktion bestimmen. Die Wahrscheinlichkeiten in der Zustandszerlegung (26) werden statistisch interpretiert.
Stellen Sie sich ein großes Ensemble von Biosystemen mit dem Zustand vor Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{\rho}_0} Interaktion mit der Umwelt Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon} . (Wir erinnern uns, dass die Interaktion mathematisch im Lindbladian kodiert ist Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{{L}}} ) Aus dieser Interaktion ergibt sich eine biologische Funktion Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} produziert Ausgabe Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} mit Wahrscheinlichkeit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_x} .Wir bemerken, dass in den Operatortermen die Wahrscheinlichkeit ausgedrückt wird als Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_x=Tr\widehat{\rho}_{steady}\widehat{E}^F(x)}
Diese Interpretation kann sogar auf ein einzelnes Biosystem angewendet werden, das viele Male auf dieselbe Umgebung trifft.
Zu beachten ist dieser Grenzzustand Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{\rho}_{steady}} drückt die Stabilität gegenüber dem Einfluss der Betonumgebung aus Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon} . Natürlich würde in der realen Welt der Grenzzustand niemals erreicht werden. Die mathematische Formel (25) beschreibt den Prozess der Stabilisierung, Dämpfung von Schwankungen. Aber sie würden mit der Zeit nie ganz verschwinden.
Wir stellen fest, dass ein stationärer Zustand die stationäre GKSL-Gleichung erfüllt:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i[\widehat{H},\widehat{\rho}_{steady}]= \widehat{L}[\widehat{\rho}_{steady}]} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (27)} |
Es ist auch wichtig darauf hinzuweisen, dass im Allgemeinen ein stationärer Zustand der Quanten-Master-Gleichung nicht eindeutig ist, er hängt von der Klasse der Anfangsbedingungen ab.