Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, Interface administrators, lookupuser, oversight, Push subscription managers, Suppressors, Administrators, translator, Widget editors
17,894
edits
(Created page with "Nos últimos anos, desenvolvimentos paralelos em diferentes disciplinas focaram no que tem sido chamado de "Conectividade", um conceito usado para entender e descrever os "Sistemas Complexos"") |
Gianfranco (talk | contribs) |
||
(10 intermediate revisions by one other user not shown) | |||
Line 11: | Line 11: | ||
==Consideração Preliminar== | ==Consideração Preliminar== | ||
Nos últimos anos, desenvolvimentos paralelos em diferentes disciplinas focaram no que tem sido chamado de "Conectividade", um conceito usado para entender e descrever os "Sistemas Complexos". As conceituações e funcionalizações de conectividade evoluíram amplamente dentro de seus limites disciplinares, mas há claras semelhanças neste conceito e em sua aplicação em todas as disciplinas.. No entanto, qualquer implementação do conceito de conectividade envolve restrições ontológicas e epistemológicas, o que nos leva a questionar se existe um tipo ou conjunto de abordagens de conectividade que poderiam ser aplicadas a todas as disciplinas. | Nos últimos anos, desenvolvimentos paralelos em diferentes disciplinas focaram no que tem sido chamado de "Conectividade", um conceito usado para entender e descrever os "Sistemas Complexos". As conceituações e funcionalizações de conectividade evoluíram amplamente dentro de seus limites disciplinares, mas há claras semelhanças neste conceito e em sua aplicação em todas as disciplinas.. No entanto, qualquer implementação do conceito de conectividade envolve restrições ontológicas e epistemológicas, o que nos leva a questionar se existe um tipo ou conjunto de abordagens de conectividade que poderiam ser aplicadas a todas as disciplinas. Nesta revisão, exploramos quatro desafios ontológicos e epistemológicos no uso da conectividade para entender sistemas complexos do ponto de vista de disciplinas muito diferentes. | ||
No capítulo 'Conectividade e Sistemas Complexos', vamos finalmente introduzir o conceito de: | |||
# | #definindo a unidade fundamental para o estudo da conectividade; | ||
# | #separando a conectividade estrutural da conectividade funcional; | ||
# | #compreensão do comportamento emergente; e | ||
# | #medindo a conectividade. | ||
Temos agora que considerar o perfil complexo da função mastigatória, para poder falar em "conectividade"<ref>{{cita libro | |||
| autore = Turnbull L | | autore = Turnbull L | ||
| autore2 = Hütt MT | | autore2 = Hütt MT | ||
Line 48: | Line 48: | ||
}}</ref> | }}</ref> | ||
Somente em tempos posteriores a importância da função mastigatória tornou-se evidente como um Sistema Complexo; fica claro por causa de sua interação com uma infinidade de outros Centros e Sistemas Nervosos (SNC), que também estão distantes do ponto de vista funcional.<ref>{{cita libro | |||
| autore = Viggiano A | | autore = Viggiano A | ||
| autore2 = Manara R | | autore2 = Manara R | ||
Line 75: | Line 75: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>. | }}</ref>. A função mastigatória, aliás, sempre foi considerada uma função periférica e isolada no que se refere à fonética e à mastigação.. Seguindo essa interpretação, foram inúmeros os pontos de vista que focaram, e ainda focam, no diagnóstico e reabilitação da mastigação exclusivamente nos maxilares, excluindo qualquer correlação multiestrutural. | ||
Esse tipo de abordagem denota um claro 'reducionismo' nos conteúdos do próprio sistema: em biologia, é mais realista considerar a funcionalidade de sistemas como "Sistemas Complexos" que não operam de forma linear. Esses sistemas empregam uma abordagem estocástica, na qual a interação dos vários constituintes gera um ‘Comportamento Emergente’ (EB)<ref>{{Cite book | |||
| autore = Florio T | | autore = Florio T | ||
| autore2 = Capozzo A | | autore2 = Capozzo A | ||
Line 116: | Line 116: | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> | ||
{{Q2| | {{Q2|Nesta abordagem, não basta analisar um único elemento constituinte para interpretar o EB do sistema: é necessário realizar uma análise integrada de todos os componentes constituintes, tanto no tempo quanto no espaço.. <ref>{{Cite book | ||
| autore = Iyer-Biswas S | | autore = Iyer-Biswas S | ||
| autore2 = Hayot F | | autore2 = Hayot F | ||
Line 136: | Line 136: | ||
}}</ref>}} | }}</ref>}} | ||
O resultado paradigmático inverte a tendência de considerar o sistema mastigatório como um simples órgão cinemático, e vai muito além do procedimento mecanicista tradicional da Gnatologia Clássica. | |||
Esse aspecto também introduz um tipo de perfil indeterminístico de funções biológicas, em que a função de um sistema se apresenta como uma rede de múltiplos elementos relacionados. | |||
Além de interpretar seu estado, esse sistema deve ser estimulado externamente para analisar a resposta evocada, como é típico de sistemas indeterminísticos.<ref>{{Cite book | |||
| autore = Lewis ER | | autore = Lewis ER | ||
| autore2 = MacGregor RJ | | autore2 = MacGregor RJ | ||
Line 158: | Line 158: | ||
}}</ref> | }}</ref> | ||
É, portanto, essencial passar de um modelo simples e linear de clínica odontológica para um modelo de Complexo Estocástico de neurofisiologia mastigatória. | |||
[[File:VEMP.jpg|left|frame|''' | [[File:VEMP.jpg|left|frame|'''Figura 1:''' Traço EMG representando um potencial evocado vestibular registrado nos músculos masseteres. Observe que p11 e n21 indicam a latência potencial em 11 e 21 ms do estímulo acústico]] | ||
Como confirmação desta abordagem mais complexa e integrada para interpretar as funções da mastigação, apresenta-se aqui um estudo onde surge o perfil de um "Sistema Neural Complex". No referido estudo, foi analisada a ligação orgânica e funcional do sistema vestibular com o sistema trigeminal. <ref>{{Cite book | |||
| autore = Deriu F | | autore = Deriu F | ||
| autore2 = Ortu E | | autore2 = Ortu E | ||
Line 184: | Line 184: | ||
| OCLC = | | OCLC = | ||
}} | }} | ||
</ref>. | </ref>. Estímulos acústicos podem evocar respostas EMG-reflex no músculo masseter chamadas Potenciais Evocados Miogênicos Vestibulares (VEMPs). Mesmo que esses resultados tenham sido atribuídos anteriormente à ativação dos receptores cocleares (som de alta intensidade), estes também podem ativar os receptores vestibulares. | ||
Uma vez que estudos anatômicos e fisiológicos, tanto em animais quanto em humanos, mostraram que os músculos masseteres são alvos das entradas vestibulares, os autores deste estudo reavaliaram a contribuição vestibular para os reflexos massetéricos. | |||
Este é um exemplo típico de um sistema complexo de nível básico, pois consiste em apenas dois sistemas nervosos cranianos, mas, ao mesmo tempo, interagindo ativando circuitos mono e polissinápticos. (Figura 1). | |||
Seria apropriado neste momento introduzir alguns tópicos relacionados aos conceitos acima mencionados, que esclareceriam a lógica do projeto Masticationpedia. Isso introduziria os capítulos que estão no centro do projeto. | |||
Assim, o objeto é: | |||
{{q2| | {{q2|Mastigação e Processos Cognitivos, bem como Tronco Encefálico e Mastigação<br /><small>estes serão expandidos em tópicos essenciais adicionais, como a "Segmentação do Sistema Nervoso Trigêmeo" no último capítulo, 'Ciência Extraordinária'.</small>}} | ||
=== | ===Mastigação e Processos Cognitivos=== | ||
Nos últimos anos, a mastigação tem sido um tópico de discussão sobre os efeitos de manutenção e suporte do desempenho cognitivo.. | |||
Um elegante estudo realizado através de <sub>f</sub>MR e tomografia por emissão de pósitrons (PET) mostrou que a mastigação leva a um aumento no fluxo sanguíneo cortical e ativa o córtex somatossensorial adicional, motor motor e insular, bem como o estriado , o tálamo e o cerebelo. | |||
A mastigação logo antes de realizar uma tarefa cognitiva aumenta os níveis de oxigênio no sangue (BOLD do sinal de fMRI) no córtex pré-frontal e no hipocampo, estruturas importantes envolvidas no aprendizado e na memória, melhorando assim o desempenho da tarefa.<ref>{{Cite book | |||
| autore = Yamada K | | autore = Yamada K | ||
| autore2 = Park H | | autore2 = Park H | ||
Line 218: | Line 218: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> Estudos epidemiológicos anteriores mostraram que um número reduzido de dentes residuais, uso incongruente de próteses e um desenvolvimento limitado da força mandibular estão diretamente relacionados ao desenvolvimento de demência, reforçando ainda mais a noção de que a mastigação contribui para a manutenção das funções cognitivas.<ref>{{Cite book | ||
| autore = Kondo K | | autore = Kondo K | ||
| autore2 = Niino M | | autore2 = Niino M | ||
Line 238: | Line 238: | ||
}}</ref>. | }}</ref>. | ||
Um estudo recente forneceu mais evidências em apoio à interação entre os processos mastigatórios, aprendizagem e memória, com foco na função do hipocampo que é essencial para a formação de novas memórias<ref name="MFCF">{{Cite book | |||
| autore = Kubo KY | | autore = Kubo KY | ||
| autore2 = Ichihashi Y | | autore2 = Ichihashi Y | ||
Line 262: | Line 262: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>. | }}</ref>. Uma desarmonia oclusal, como perda de dentes e aumento da dimensão oclusal vertical, causa bruxismo ou dor nos músculos da mastigação e disfunções temporomandibulares (DTMs)<ref>{{Cite book | ||
| autore = Christensen J | | autore = Christensen J | ||
| titolo = Effect of occlusion-raising procedures on the chewing system | | titolo = Effect of occlusion-raising procedures on the chewing system | ||
Line 301: | Line 301: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>. | }}</ref>. Assim, para descrever a função prejudicada do hipocampo em uma situação reduzida ou função mastigatória anormal, os autores empregaram um modelo animal (camundongos) chamado ‘Molarless Senescence-Accelerated Prone’ (SAMP8) para fazer um paralelismo sobre o homem. Em camundongos SAMP8, para os quais a oclusão foi modificada, o aumento da dimensão vertical oclusal de cerca de 0,1 mm com materiais dentários mostrou que a desarmonia oclusal atrapalha o aprendizado e a memória. Esses animais mostraram um déficit dependente da idade no aprendizado espacial na água de Morris. <ref>{{Cite book | ||
| autore = Arakawa Y | | autore = Arakawa Y | ||
| autore2 = Ichihashi Y | | autore2 = Ichihashi Y | ||
Line 347: | Line 347: | ||
}}</ref> | }}</ref> | ||
Aumentar a dimensão vertical da mordida em camundongos SAMP8 diminui o número de células piramidais<ref name="ODIS" /> e os números de suas espinhas dendríticas.<ref>{{Cite book | |||
| autore = Kubo KY | | autore = Kubo KY | ||
| autore2 = Kojo A | | autore2 = Kojo A | ||
Line 366: | Line 366: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> Também aumenta a hipertrofia e hiperplasia ácida da proteína fibrilar em astrócitos nas regiões do hipocampo CA1 e CA3.<ref>{{Cite book | ||
| autore = Ichihashi Y | | autore = Ichihashi Y | ||
| autore2 = Saito N | | autore2 = Saito N | ||
Line 389: | Line 389: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>. | }}</ref>. Em roedores e macacos, desarmonias oclusais induzidas pelo aumento da dimensão vertical com aumentos de acrílico nos incisivos<ref name="ARESO">{{Cite book | ||
| autore = Areso MP | | autore = Areso MP | ||
| autore2 = Giralt MT | | autore2 = Giralt MT | ||
Line 428: | Line 428: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> ou a inserção do plano de mordida na mandíbula está associada ao aumento dos níveis de cortisol urinário e níveis plasmáticos elevados de corticosterona, sugerindo que a desarmonia oclusal também é uma fonte de estresse. | ||
Em apoio a essa noção, camundongos SAMP8 com déficits de aprendizado mostram um aumento acentuado nos níveis plasmáticos de corticosterona<ref name="ICHI2" /> e subregulação de GR e GRmRNA do hipocampo. A desarmonia oclusal também afeta a atividade catecolaminérgica. Alternar o fechamento da mordida pela inserção de um plano de mordida de acrílico nos incisivos inferiores leva a um aumento nos níveis de dopamina e noradrenalina no hipotálamo e no córtex frontal<ref name="ARESO" /><ref>{{Cite book | |||
| autore = Gómez FM | | autore = Gómez FM | ||
| autore2 = Areso MP | | autore2 = Areso MP | ||
Line 450: | Line 450: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>, | }}</ref>, e diminuição da tiroxinaidroxilase, do ciclocloridrato de GTP e da serotonina imunorreativa no córtex cerebral e no núcleo caudado, na substância negra, no locus ceruleus e no núcleo dorsal da rafe, que são semelhantes às alterações crônicas induzidas pelo estresse.<ref>{{Cite book | ||
| autore = Feldman S | | autore = Feldman S | ||
| autore2 = Weidenfeld J | | autore2 = Weidenfeld J | ||
Line 467: | Line 467: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> Essas alterações nos sistemas catecolaminérgicos e serotoninérgicos, induzidas por desarmonias oclusais, afetam claramente a inervação do hipocampo. As condições de aumento da dimensão vertical alteram a neurogênese e levam à apoptose no giro ipocampal por diminuir a expressão do cérebro ipocampal derivado de fatores neurotróficos: tudo isso poderia contribuir para as mudanças na aprendizagem observada em animais com desarmonia oclusal.<ref name="MFCF" /> | ||
=== | ===Tronco Encefálico e Mastigação=== | ||
[[File:Segmentazione Trigeminale.jpg|left|thumb|500px|''' | [[File:Segmentazione Trigeminale.jpg|left|thumb|500px|'''Figura 2:''' Segmentação do Sistema Nervoso Trigêmeo]] | ||
O distrito do tronco encefálico é uma área de retransmissão que conecta os centros superiores do cérebro, o cerebelo e a medula espinhal e fornece a principal inervação sensorial e motora da face, cabeça e pescoço através dos nervos cranianos.. | |||
Isso desempenha um papel determinante na regulação da respiração, locomoção, postura, equilíbrio, excitação (incluindo controle intestinal, bexiga, pressão arterial e frequência cardíaca). É responsável por regular vários reflexos, incluindo deglutição, tosse e vômito. O tronco cerebral é controlado por centros cerebrais superiores das regiões corticais e subcorticais, incluindo os núcleos dos gânglios da base e o diencéfalo, bem como as alças de feedback do cerebelo e da medula espinhal.. A neuromodulação pode ser alcançada pelo modo “clássico” de neurotransmissores glutamatérgicos e GABA (ácido gama-aminobutírico) através de uma excitação primária e inibição da “rede anatômica”, mas também pode ser alcançada através do uso de transmissores que atuam nas proteínas G. Esses neuromoduladores incluem a monoamina (serotonina, noradrenalina e dopamina) acetilcolina, assim como glutamato e GABA. Além disso, não apenas os neuropeptídeos e as purinas atuam como neuromoduladores: o mesmo acontece com outros mediadores químicos, como os Fatores de Crescimento, que podem ter ações semelhantes.<ref>{{Cite book | |||
| autore = Mascaro MB | | autore = Mascaro MB | ||
| autore2 = Prosdócimi FC | | autore2 = Prosdócimi FC | ||
Line 494: | Line 494: | ||
}}</ref> | }}</ref> | ||
A rede neural descrita acima não termina com a única correlação entre os centros somatossensoriais do trigêmeo e outras áreas motoras, mas também se desvia para os processos amigdaloidei através de uma correlação com a área do tronco encefálico do trigêmeo. A amígdala torna-se ativa a partir do medo, desempenhando um papel importante na resposta emocional a situações de risco de vida. Quando os ratos de laboratório se sentem ameaçados, eles respondem mordendo ferozmente. A força da mordida é regulada pelos núcleos motores do sistema trigeminal e do tronco cerebral trigeminal Me5.O Me5 transmite sinais proprioceptivos dos músculos mastigatórios e ligamentos parodontais para os núcleos e motores do trigêmeo. As projeções do Núcleo Amigdalóide Central (ACe) enviam conexões para o núcleo motor trigeminal e formação pré-motora reticular e diretamente para o Me5. | |||
Para confirmar isso, em um estudo realizado em camundongos, os neurônios do núcleo Amigdaloide Central (ACe) foram marcados após a injeção de um traçador retrógrado (Fast Blue), no núcleo caudal do Me5, indicando que os Amigdaloianos enviam projeções diretas ao Me5, e sugerem que a amígdala regule a força da mordida modificando a atividade neuronal no Me5 através de uma facilitação neural.<ref>{{Cite book | |||
| autore = Shirasu M | | autore = Shirasu M | ||
| autore2 = Takahashi T | | autore2 = Takahashi T | ||
Line 519: | Line 519: | ||
}}</ref> | }}</ref> | ||
A modificação das proporções oclusais pode alterar as funções somatossensoriais orais e os tratamentos reabilitadores do sistema mastigatório devem restaurar as funções somatossensoriais. No entanto, não está claro por que alguns pacientes não conseguem se adaptar à restauração mastigatória e os distúrbios sensório-motores permanecem. A princípio, parecem ser mudanças estruturais, não apenas funcionais.. O córtex motor primário da face está envolvido na geração e controle dos movimentos faciais de ouro e entradas sensoriais ou funções motoras alteradas, o que pode levar a alterações neuroplásticas na área cortical M1.<ref name="MFCF" /><ref>{{Cite book | |||
| autore = Avivi-Arber L | | autore = Avivi-Arber L | ||
| autore2 = Lee JC | | autore2 = Lee JC | ||
Line 539: | Line 539: | ||
}}</ref> | }}</ref> | ||
== | ==Considerações conclusivas== | ||
Em conclusão, fica claro a partir da premissa, que o sistema mastigatório deve ser considerado não certamente como um sistema simplesmente regido por leis mecânicas, mas como um "Sistema Complexo" de tipo indeterminístico, onde se pode quantificar o "Comportamento Emergente" somente após estimulando-a e analisando a resposta evocada (Figura 2). O Sistema Neuronal também dialoga com sua própria linguagem de máquina criptografada (potencial de ação e correntes iônicas) e, portanto, não é possível interpretar os sintomas referidos pelo paciente por meio da linguagem natural. | |||
Este conceito aprofunda o conhecimento do estado de saúde de um sistema, pois elicia uma resposta de dentro da rede – ou, pelo menos, de grande parte dela – alocando componentes normais e/ou anormais dos vários nós da rede. Em termos científicos, introduz também um novo paradigma no estudo do Sistema Mastigatório: a “Função Neuro Gnatologia”, que iremos conhecer oportunamente no capítulo ‘Ciências Extraordinárias’.. | |||
Atualmente, a interpretação do Comportamento Emergente do sistema mastigatório em odontologia é realizada apenas pela análise da resposta voluntária do vale, por meio de registros eletromiográficos ‘padrão de interferência EMG’, e testes radiográficos e axográficos (replicadores dos movimentos mandibulares).. Estes só podem ser considerados testes descritivos. | |||
O paradigma dos testes descritivos gnatológicos enfrentou uma crise anos atrás: apesar de uma tentativa de reordenamento dos diversos axiomas, escolas de pensamento e rigor clínico-experimental no campo das Disfunções Temporomandibulares (através da realização de um protocolo denominado "Research Diagnostic Criteria" RDC/TMDs), esse paradigma ainda não chegou a ser aceito devido à incompletude científico-clínica do próprio procedimento. Merece, no entanto, uma referência particular à RDC/TMD, pelo menos pelo empenho que foi assumido pelos autores e, ao mesmo tempo, rolar os limites. | |||
O protocolo RDC/TMD foi projetado e inicializado para evitar a perda de "critérios de diagnóstico padronizados" e avaliar uma padronização diagnóstica de dados empíricos à disposição. | |||
Este protocolo foi apoiado pelo Instituto Nacional de Pesquisa Odontológica (NIDR) e conduzido na Universidade de Washington e no Grupo de Saúde Corporativa de Puget Sound, Seattle, Washington. Samuel F. Dworkin, M. Von Korff e L. LeResche foram os principais investigadores<ref>{{Cite book | |||
| autore = Dworkin SF | | autore = Dworkin SF | ||
| autore2 = Huggins KH | | autore2 = Huggins KH | ||
Line 557: | Line 557: | ||
| autore6 = Massoth D | | autore6 = Massoth D | ||
| autore7 = LeResche L | | autore7 = LeResche L | ||
| autore8 = Truelove | | autore8 = Truelove Edmond L | ||
| titolo = A randomized clinical trial using research diagnostic criteria for temporomandibular disorders-axis II to target clinic cases for a tailored self-care TMD treatment program | | titolo = A randomized clinical trial using research diagnostic criteria for temporomandibular disorders-axis II to target clinic cases for a tailored self-care TMD treatment program | ||
| url = https://pubmed.ncbi.nlm.nih.gov/11889659/ | | url = https://pubmed.ncbi.nlm.nih.gov/11889659/ | ||
Line 574: | Line 574: | ||
}}</ref>. | }}</ref>. | ||
Para chegar à formulação do protocolo do ‘RDC’, foi feita uma revisão da literatura de métodos diagnósticos em odontologia reabilitadora e DTMs, e submetidos à validação e reprodutibilidade.. Os sistemas taxonômicos foram levados em consideração por Farrar (1972)<ref>{{Cite book | |||
| autore = Farrar WB | | autore = Farrar WB | ||
| titolo = Differentiation of temporomandibular joint dysfunction to simplify treatment | | titolo = Differentiation of temporomandibular joint dysfunction to simplify treatment | ||
Line 617: | Line 617: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>, Eversole | }}</ref>, Eversole e Machado (1985)<ref>{{Cite book | ||
| autore = Eversole LR | | autore = Eversole LR | ||
| autore2 = Machado L | | autore2 = Machado L | ||
Line 729: | Line 729: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>, Bergamini | }}</ref>, Bergamini e Prayer-Galletti (1990)<ref>{{Cite book | ||
| autore = Prayer Galletti S | | autore = Prayer Galletti S | ||
| autore2 = Colonna MT | | autore2 = Colonna MT | ||
Line 748: | Line 748: | ||
| OCLC = | | OCLC = | ||
}}</ref>, Truelove (1992)<ref>{{Cite book | }}</ref>, Truelove (1992)<ref>{{Cite book | ||
| autore = Truelove | | autore = Truelove Edmond L | ||
| autore2 = Sommers EE | | autore2 = Sommers EE | ||
| autore3 = LeResche L | | autore3 = LeResche L | ||
Line 767: | Line 767: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>, | }}</ref>, e comparou-os, concedendo-os a um conjunto de critérios de avaliação. | ||
Os critérios de avaliação foram divididos em duas categorias que envolvem considerações metodológicas e considerações clínicas. | |||
O fim da pesquisa veio com a eliminação, por falta de validação científica e clínica, de uma série de metodologias instrumentais de diagnóstico como eletromiografia interferencial (Padrão de Interferência EMG), Pantografia, Diagnóstico por Raio-X, etc.. Estes serão descritos com mais detalhes nas próximas edições do Masticationpedia. Este primeiro alvo foi, portanto, a solicitação científica de um "dado objetivo" e não gerado por opiniões, escolas de pensamento ou avaliações subjetivas do fenômeno.. Durante o Workshop da International Association for Dental Research (IADR) de 2008, foram apresentados os resultados preliminares do RDC/TMDs na tentativa de validar o projeto. | |||
Concluiu-se que, para uma revisão e validação simultânea do [RDC/TMD], é essencial que os testes sejam capazes de fazer um diagnóstico diferencial entre pacientes com DTM com dor e indivíduos sem dor e, sobretudo, discriminar pacientes com dor de DTM de pacientes com dor orofacial sem DTM.<ref>{{Cite book | |||
| autore = Lobbezoo F | | autore = Lobbezoo F | ||
| autore2 = Visscher CM | | autore2 = Visscher CM | ||
Line 792: | Line 792: | ||
}}</ref> | }}</ref> | ||
Este último artigo, reconsiderando a dor como um sintoma essencial para a interpretação clínica, coloca em jogo toda a fenomenologia neurofisiológica, não apenas esta. | |||
Para se movimentar com mais facilidade neste ramo médico, é necessária uma abordagem científico-clínica diferente, que amplie os horizontes de competência em áreas como a bioengenharia e a neurobiologia. | |||
É, portanto, essencial focar a atenção em como captar os sinais eletrofisiológicos do trigêmeo em resposta a uma série de gatilhos evocados por um dispositivo eletrofisiológico, tratando os dados e determinando um valor orgânico-funcional dos sistemas trigeminal e mastigatório como antecipado por Marom Bikson e col. em seu «''[[:File:Electrical stimulation of cranial nerves in cognition and disease.pdf|Estimulação elétrica dos nervos cranianos na cognição e na doença]]''». | |||
Devemos pensar em um sistema que unifique as funções mastigatórias e neurofisiológicas introduzindo um novo termo: "'''Funções Neuro-Gnatológicas'''"<br>que será objeto de um capítulo dedicado. | |||
{{Bib}} | {{Bib}} |
edits