Difference between revisions of "3° Clinical case: Meningioma"

no edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{main menu}}
{{main menu}}
== Abstract ==
[[File:Meningioma 4 by Gianni Frisardi.jpeg|left|300x300px]]
This summary examines the shift from traditional deterministic diagnostic models to a quantum-like approach in understanding neuromotor responses related to occlusal and postural disorders, as discussed in the Masticationpedia. This approach acknowledges the probabilistic nature of medical diagnoses, emphasizing the complex interactions between biophysical effects and neuromotor responses.
Highlighting the limitations of deterministic models, the narrative advocates for a probabilistic perspective that better captures the nuances of patient symptoms in cases of occlusal and postural disorders. The text illustrates this with the case of "Balancer," a patient with postural disturbances following prosthetic rehabilitation, demonstrating how traditional diagnostic methods might lead to oversimplified treatments or misdiagnoses.
Furthermore, the discussion critiques conventional tools like stabilization splints and explores the Centric Relationship concept, advocating for a dynamic, patient-specific approach in dental diagnostics that considers the broader neuromuscular system. It calls for a more integrative, patient-centered approach in neuromuscular dentistry, emphasizing the need for diagnostic innovation that accommodates the inherent complexities of treating neuromuscular and postural disorders. This narrative serves as a practical and theoretical guide for clinicians seeking to adopt more precise and holistic approaches in patient care.


{{ArtBy|
{{ArtBy|
Line 13: Line 5:
| autore2 = Flavio Frisardi
| autore2 = Flavio Frisardi
}}
}}
'''Abstract:'''This clinical case, referred to as Balancer, involves a 60-year-old male patient experiencing postural and gait disturbances following prosthetic rehabilitation. The case will be analyzed using the same diagnostic framework applied in previous cases like Mary Poppins and Bruxer. The analysis focuses on correlations between temporomandibular disorders (TMD), posture, and occlusal balance, with particular emphasis on Centric Relationship and its influence on both occlusal stability and posture.
Recent studies, including those by Minervini et al., suggest a relationship between TMD and postural problems, positing that TMD affects neuromuscular balance, influencing body posture. Despite this, many clinicians remain skeptical about these connections. The case of Balancer raises concerns about the correlation between Centric Relationship and postural stability, presenting a situation where traditional manual centric positioning (used in orthognathic surgery) conflicted with Neuro Evoked Centric Relationship obtained via trigeminal root stimulation, revealing spatial misalignment.
Further exploration of neuromuscular balance and symmetry through electromyographic procedures highlighted significant discrepancies between the asymmetry detected in the EMG patterns and the neurological findings. The case underscores the importance of integrating both dental and neurological contexts to reach an accurate diagnosis, particularly when interpreting terms like "asymmetry." This case demonstrates that a seemingly trivial postural asymmetry could signify more severe neurological damage.
The clinical findings suggest that while there may be minor EMG asymmetry due to prosthetic imbalance, the neurological symptoms, including an absent jaw jerk and latency asymmetry in the Silent Period, indicate a deeper neurological issue rather than a simple dental malocclusion. The diagnostic model applied here aims to decrypt the central nervous system's machine language code to distinguish between functional postural disturbances and structural neurological damage.
==Introduction==
==Introduction==


Line 18: Line 19:


As now implicit, this clinical case too, which from now on we will call with a fancy name <u>Balancer</u>' due to its related symptoms of postural and gait disturbance after being prosthetically rehabilitated, will follow the presentation model of the previous clinical cases. The introduction will present topics relating to the diagnostic model in question on which we will make the first conceptual reflections highlighted by our dear and thoughtful Linus. A recent article by Minervini et al.<ref>Giuseppe Minervini, Rocco Franco, Maria Maddalena Marrapodi, Salvatore Crimi, Almir Badnjević, Gabriele Cervino, Alberto Bianchi, and  Marco Cicciù. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095000/ Correlation between Temporomandibular Disorders (TMD) and Posture Evaluated trough the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD): A Systematic Review with Meta-Analysis]. J Clin Med. 2023 Apr; 12(7): 2652. Published online 2023 Apr 2. doi: 10.3390/jcm12072652.PMCID: PMC10095000.PMID: 37048735
As now implicit, this clinical case too, which from now on we will call with a fancy name <u>Balancer</u>' due to its related symptoms of postural and gait disturbance after being prosthetically rehabilitated, will follow the presentation model of the previous clinical cases. The introduction will present topics relating to the diagnostic model in question on which we will make the first conceptual reflections highlighted by our dear and thoughtful Linus. A recent article by Minervini et al.<ref>Giuseppe Minervini, Rocco Franco, Maria Maddalena Marrapodi, Salvatore Crimi, Almir Badnjević, Gabriele Cervino, Alberto Bianchi, and  Marco Cicciù. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095000/ Correlation between Temporomandibular Disorders (TMD) and Posture Evaluated trough the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD): A Systematic Review with Meta-Analysis]. J Clin Med. 2023 Apr; 12(7): 2652. Published online 2023 Apr 2. doi: 10.3390/jcm12072652.PMCID: PMC10095000.PMID: 37048735
</ref> asserts the following: TMD has ligament and muscle connections with the cervical area, therefore these connections have led to the hypothesis that posture problems may influence the development of TMD, <ref>An J.-S., Jeon D.-M., Jung W.-S., Yang I.-H., Lim W.H., Ahn S.-J. Influence of temporomandibular joint disc displacement on craniocervical posture and hyoid bone position. Am. J. Orthod. Dentofac. Orthop. 2015;147:72–79. doi: 10.1016/j.ajodo.2014.09.015.</ref><ref>Lee W.Y., Okeson J.P., Lindroth J. The relationship between forward head posture and temporomandibular disorders. J. Orofac. Pain. 1995;9 </ref><ref>Minervini G., Mariani P., Fiorillo L., Cervino G., Cicciù M., Laino L. Prevalence of temporomandibular disorders in people with multiple sclerosis: A systematic review and meta-analysis. CRANIO® 2022:1–9. doi: 10.1080/08869634.2022.2137129.</ref><ref>Minervini G.D., Del Mondo D.D., Russo D.D., Cervino G.D., D’Amico C.D., Fiorillo L.D. Stem Cells in Temporomandibular Joint Engineering: State of Art and Future Persectives. J. Craniofacial Surg. 2022;33:2181–2187. doi: 10.1097/SCS.0000000000008771.</ref><ref>Crescente G., Minervini G., Spagnuolo C., Moccia S. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822121/ Cannabis Bioactive Compound-Based Formulations: New Per-spectives for the Management of Orofacial Pain]. Molecules. 2022;28:106. doi: 10.3390/molecules28010106.</ref> therefore masticatory cycles should be balanced as unilateral chewing could alter the postural balance of the body. Stabilization splints can bring about neuromuscular balance, removing posterior interference and providing a stable occlusal relationship and an optimization of the centric relationship. The relationship between craniometric posture and TMD has been studied, however, despite the huge number of studies, clinicians and academics still remain unconvinced.<ref>Abe S., Kawano F., Matsuka Y., Masuda T., Okawa T., Tanaka E. Relationship between Oral Parafunctional and Postural Habits and the Symptoms of Temporomandibular Disorders: A Survey-Based Cross-Sectional Cohort Study Using Propensity Score Matching Analysis. J. Clin. Med. 2022;11:6396. doi: 10.3390/jcm11216396.</ref>
</ref> asserts the following: TMD has ligament and muscle connections with the cervical area, therefore these connections have led to the hypothesis that posture problems may influence the development of TMD, <ref>An J.-S., Jeon D.-M., Jung W.-S., Yang I.-H., Lim W.H., Ahn S.-J. Influence of temporomandibular joint disc displacement on craniocervical posture and hyoid bone position. Am. J. Orthod. Dentofac. Orthop. 2015;147:72–79. doi: 10.1016/j.ajodo.2014.09.015.</ref><ref>Lee W.Y., Okeson J.P., Lindroth J. The relationship between forward head posture and temporomandibular disorders. J. Orofac. Pain. 1995;9 </ref><ref>Minervini G., Mariani P., Fiorillo L., Cervino G., Cicciù M., Laino L. Prevalence of temporomandibular disorders in people with multiple sclerosis: A systematic review and meta-analysis. CRANIO® 2022:1–9. doi: 10.1080/08869634.2022.2137129.</ref><ref>Minervini G.D., Del Mondo D.D., Russo D.D., Cervino G.D., D’Amico C.D., Fiorillo L.D. Stem Cells in Temporomandibular Joint Engineering: State of Art and Future Persectives. J. Craniofacial Surg. 2022;33:2181–2187. doi: 10.1097/SCS.0000000000008771.</ref><ref>Crescente G., Minervini G., Spagnuolo C., Moccia S. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822121/ Cannabis Bioactive Compound-Based Formulations: New Per-spectives for the Management of Orofacial Pain]. Molecules. 2022;28:106. doi: 10.3390/molecules28010106.</ref> therefore masticatory cycles should be balanced as unilateral chewing could alter the postural balance of the body. Stabilization splints can bring about neuromuscular balance, removing posterior interference and providing a stable occlusal relationship and an optimization of the centric relationship. The relationship between craniometric posture and TMD has been studied, however, despite the huge number of studies, clinicians and academics still remain unconvinced.<ref>Abe S., Kawano F., Matsuka Y., Masuda T., Okawa T., Tanaka E. [https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36362625/ Relationship between Oral Parafunctional and Postural Habits and the Symptoms of Temporomandibular Disorders: A Survey-Based Cross-Sectional Cohort Study Using Propensity Score Matching Analysis.] J. Clin. Med. 2022;11:6396. doi: 10.3390/jcm11216396.</ref>


=== '''''[[File:Question 2.jpg|50x50px|link=https://wiki.masticationpedia.org/index.php/File:Question_2.jpg|left]]''Centric Relationship and Posture''' ===
=== '''''[[File:Question 2.jpg|50x50px|link=https://wiki.masticationpedia.org/index.php/File:Question_2.jpg|left]]''Centric Relationship and Posture''' ===
Line 30: Line 31:
</gallery></center>In conclusion, at this point the problem is no longer the correlation between posture and occlusal stability but the correlation between the Centric Relation and occlusal stability because this relationship is the primus movens of the whole pathophysiological phenomenon and if we are not sure of the assertions we cannot go beyond . {{q2|Be careful, therefore, to use the term 'correlation' between Centric Relation and Posture or Occlusal stability and Posture.|}}</blockquote>
</gallery></center>In conclusion, at this point the problem is no longer the correlation between posture and occlusal stability but the correlation between the Centric Relation and occlusal stability because this relationship is the primus movens of the whole pathophysiological phenomenon and if we are not sure of the assertions we cannot go beyond . {{q2|Be careful, therefore, to use the term 'correlation' between Centric Relation and Posture or Occlusal stability and Posture.|}}</blockquote>


Another recent study Inchingolo et al.<ref>Alessio Danilo Inchingolo, Carmela Pezzolla, Assunta Patano, Sabino Ceci, Anna Maria Ciocia, Grazia Marinelli, Giuseppina Malcangi, Valentina Montenegro, Filippo Cardarelli, Fabio Piras, Irene Ferrara, Biagio Rapone, Ioana Roxana Bordea, Dario Di Stasio, Antonio Scarano, Felice Lorusso, Andrea Palermo, Kenan Ferati, Angelo Michele Inchingolo, Francesco Inchingolo, Daniela Di Venere, Gianna Dipalma . Experimental Analysis of the Use of Cranial Electromyography in Athletes and Clinical Implications. Int J Environ Res Public Health. 2022 Jun 29;19(13):7975. doi: 10.3390/ijerph19137975.
Another recent study Inchingolo et al.<ref>Alessio Danilo Inchingolo, Carmela Pezzolla, Assunta Patano, Sabino Ceci, Anna Maria Ciocia, Grazia Marinelli, Giuseppina Malcangi, Valentina Montenegro, Filippo Cardarelli, Fabio Piras, Irene Ferrara, Biagio Rapone, Ioana Roxana Bordea, Dario Di Stasio, Antonio Scarano, Felice Lorusso, Andrea Palermo, Kenan Ferati, Angelo Michele Inchingolo, Francesco Inchingolo, Daniela Di Venere, Gianna Dipalma . [https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/35805630/ Experimental Analysis of the Use of Cranial Electromyography in Athletes and Clinical Implications.] Int J Environ Res Public Health. 2022 Jun 29;19(13):7975. doi: 10.3390/ijerph19137975.
</ref> asserts the following: the cranial surface electromyography allows the evaluation of the occlusal state and the quantification of the neuromuscular postural balance, thus understanding the dental occlusion from a functional point of view. It therefore represents a diagnostic revolution because it allows you to see what until now was only perceptible by palpation, and therefore not quantifiable.<ref>Falla D., Dall’Alba P., Rainoldi A., Merletti R., Jull G. Repeatability of Surface EMG Variables in the Sternocleidomastoid and Anterior Scalene Muscles. Eur. J. Appl. Physiol. 2002;87:542–549. doi: 10.1007/s00421-002-0661-x</ref> A meta-analysis on the use of sEMG to evaluate the relationships between masticatory muscles and postural muscles found that the correlation between the masticatory system and the muscle activity of other parts of the body can be detected experimentally using sEMG, but this correlation has little clinic relevance .<ref>Perinetti G., Türp J.C., Primožič J., Di Lenarda R., Contardo L. Associations between the Masticatory System and Muscle Activity of Other Body Districts. A Meta-Analysis of Surface Electromyography Studies. J. Electromyogr. Kinesiol. 2011;21:877–884. doi: 10.1016/j.jelekin.2011.05.014.</ref> However, Julià-Sánchez et al. found that dental occlusion affects the biomechanical and viscoelastic properties of masticatory and postural muscles using the MyotonPRO® system.<ref>Julià-Sánchez S., Álvarez-Herms J., Cirer-Sastre R., Corbi F., Burtscher M. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005008/ The Influence of Dental Occlusion on Dynamic Balance and Muscular Tone.] Front. Physiol. 2020;10:1626. doi: 10.3389/fphys.2019.01626</ref> The influence of the occlusal state on stability was also demonstrated in an article by Heit et al. who found a significant increase in balance at rest rather than at maximal intercuspidation.<ref>Heit T., Derkson C., Bierkos J., Saqqur M. The Effect of the Physiological Rest Position of the Mandible on Cerebral Blood Flow and Physical Balance: An Observational Study. Cranio. 2015;33:195–205. doi: 10.1179/0886963414Z.00000000063.</ref> These results are consistent with previous studies that used sEMG to measure both the muscle balance of the masticatory muscles and its influence on the activity of some postural muscles. A substantial reduction in resting postural muscle activity (sternocleidomastoid, erector spinae, and soleus) was found in participants with dental malocclusions after balancing with a bite.<ref>Bergamini M., Pierleoni F., Gizdulich A., Bergamini C. Dental Occlusion and Body Posture: A Surface EMG Study. Cranio. 2008;26:25–32. doi: 10.1179/crn.2008.041.</ref><blockquote></blockquote>[[File:Question 2.jpg|50x50px|link=https://wiki.masticationpedia.org/index.php/File:Question_2.jpg|left]]
</ref> asserts the following: the cranial surface electromyography allows the evaluation of the occlusal state and the quantification of the neuromuscular postural balance, thus understanding the dental occlusion from a functional point of view. It therefore represents a diagnostic revolution because it allows you to see what until now was only perceptible by palpation, and therefore not quantifiable.<ref>Falla D., Dall’Alba P., Rainoldi A., Merletti R., Jull G. Repeatability of Surface EMG Variables in the Sternocleidomastoid and Anterior Scalene Muscles. Eur. J. Appl. Physiol. 2002;87:542–549. doi: 10.1007/s00421-002-0661-x</ref> A meta-analysis on the use of sEMG to evaluate the relationships between masticatory muscles and postural muscles found that the correlation between the masticatory system and the muscle activity of other parts of the body can be detected experimentally using sEMG, but this correlation has little clinic relevance .<ref>Perinetti G., Türp J.C., Primožič J., Di Lenarda R., Contardo L. Associations between the Masticatory System and Muscle Activity of Other Body Districts. A Meta-Analysis of Surface Electromyography Studies. J. Electromyogr. Kinesiol. 2011;21:877–884. doi: 10.1016/j.jelekin.2011.05.014.</ref> However, Julià-Sánchez et al. found that dental occlusion affects the biomechanical and viscoelastic properties of masticatory and postural muscles using the MyotonPRO® system.<ref>Julià-Sánchez S., Álvarez-Herms J., Cirer-Sastre R., Corbi F., Burtscher M. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005008/ The Influence of Dental Occlusion on Dynamic Balance and Muscular Tone.] Front. Physiol. 2020;10:1626. doi: 10.3389/fphys.2019.01626</ref> The influence of the occlusal state on stability was also demonstrated in an article by Heit et al. who found a significant increase in balance at rest rather than at maximal intercuspidation.<ref>Heit T., Derkson C., Bierkos J., Saqqur M. The Effect of the Physiological Rest Position of the Mandible on Cerebral Blood Flow and Physical Balance: An Observational Study. Cranio. 2015;33:195–205. doi: 10.1179/0886963414Z.00000000063.</ref> These results are consistent with previous studies that used sEMG to measure both the muscle balance of the masticatory muscles and its influence on the activity of some postural muscles. A substantial reduction in resting postural muscle activity (sternocleidomastoid, erector spinae, and soleus) was found in participants with dental malocclusions after balancing with a bite.<ref>Bergamini M., Pierleoni F., Gizdulich A., Bergamini C. Dental Occlusion and Body Posture: A Surface EMG Study. Cranio. 2008;26:25–32. doi: 10.1179/crn.2008.041.</ref><blockquote></blockquote>[[File:Question 2.jpg|50x50px|link=https://wiki.masticationpedia.org/index.php/File:Question_2.jpg|left]]


Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,493

edits