Difference between revisions of "Store:MTcondilo"
(Created page with "==Mediotrusive== left|thumb|300x300px <br /> {| class="wikitable" |- !Punto!!Distanza (pixel)!!Distanza (mm)!!Direzione in X (antero-posteriore) !Direzione in Y (latero-mediale) |- |2||50.92||5.09||Indietro||Mediale |- |3||148.05||14.81||Indietro||Mediale |- |4||255.81||25.58||Indietro||Mediale |- |5||265.43||26.54||Indietro||Mediale |- |6||145.68||14.57||Indietro||Mediale |- |7||62.45||6.25||Indietro||Mediale |- |8||11.87||1.19||Indietro...") |
(No difference)
|
Revision as of 21:11, 27 October 2024
Mediotrusive
Punto | Distanza (pixel) | Distanza (mm) | Direzione in X
(antero-posteriore) |
Direzione in Y
(latero-mediale) |
---|---|---|---|---|
2 | 50.92 | 5.09 | Indietro | Mediale |
3 | 148.05 | 14.81 | Indietro | Mediale |
4 | 255.81 | 25.58 | Indietro | Mediale |
5 | 265.43 | 26.54 | Indietro | Mediale |
6 | 145.68 | 14.57 | Indietro | Mediale |
7 | 62.45 | 6.25 | Indietro | Mediale |
8 | 11.87 | 1.19 | Indietro | Mediale |
Descrizione focalizzata dell'analisi matematica dei punti
Punti e coordinate coinvolte
Nel contesto della nostra analisi, abbiamo tre punti nello spazio 2D che ci interessano:
- Coordinate del punto 1 del condilo mediotrusivo:
- Coordinate del punto 7 del condilo mediotrusivo:
- Coordinate del punto di riferimento del condilo mediotrusivo:
Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti e , e il segmento che unisce i punti e . Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.
Iter matematico per il calcolo dell'angolo
L'angolo tra due segmenti può essere calcolato utilizzando la **trigonometria vettoriale** e, in particolare, il **prodotto scalare**. Questo metodo è utile quando vogliamo determinare la relazione angolare tra due movimenti distinti nello spazio.
1. Definizione dei vettori
Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti:
- Il vettore tra il punto e il punto :
- Il vettore tra il punto 1Lm e il punto H₃:
2. Prodotto scalare
Il **prodotto scalare** tra due vettori \(\vec{AB}\) e \(\vec{AC}\) è dato dalla formula:
Sostituendo i valori calcolati:
3. Calcolo delle norme
Le norme (lunghezze) dei due vettori sono calcolate con la formula della lunghezza del vettore:
4. Calcolo dell'angolo
Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori:
Sostituendo i valori:
Infine, l'angolo \(\theta\) è calcolato tramite la funzione arcoseno:
Motivo dell'analisi
L'obiettivo dell'analisi è determinare l'angolo tra due movimenti all'interno di un sistema articolare, in particolare nell'area di studio della cinematica masticatoria. La comprensione di questi angoli ci consente di:
1. **Valutare la dinamica mandibolare**: Calcolare gli angoli tra i segmenti mandibolari può fornire informazioni essenziali su come la mandibola si sposta durante il movimento, aiutando a descrivere i pattern del movimento articolare.
2. **Modellare la biomeccanica del sistema masticatorio**: Gli angoli tra i punti permettono di costruire modelli accurati che simulano il comportamento meccanico del sistema mandibolare, utilizzabili in applicazioni cliniche per diagnosi e trattamenti.
3. **Confrontare con angoli standard**: Gli angoli misurati possono essere confrontati con valori normali o patologici per identificare eventuali alterazioni nei movimenti mandibolari che potrebbero indicare disturbi dell'articolazione temporomandibolare (ATM).
Questo calcolo è fondamentale per fornire una descrizione matematica precisa della cinetica mandibolare e per migliorare la modellazione biomeccanica di strutture orofacciali, cruciali per la diagnosi e l'intervento clinico.