Difference between revisions of "Store:46laterotrusivo"

Line 55: Line 55:




Osservando la figura e la tabella, possiamo estrapolare le distanze e le direzioni dei punti marcati. Nello specifico, la distanza del punto <math>7L_m</math> rispetto al punto iniziale <math>1L_m</math> è stata calcolata come circa <math>9.05 \, \text{mm}</math>, con un angolo formato tra i vettori pari a <math>\cong 73 ^\circ</math>.
Osservando la figura e la tabella, possiamo estrapolare le distanze e le direzioni dei punti marcati. Nello specifico, la distanza del punto <math>7L_m</math> rispetto al punto iniziale <math>1L_m</math> è stata calcolata come circa <math>3.93 \,_ \text{mm}</math>, con un angolo formato tra i vettori pari a <math>\cong 73 ^\circ</math>.


{{Tooltip|2===Iter matematico per il calcolo dell'angolo==: Il vettore tra il punto <math>P1_m</math> e il punto <math>P7_m</math>:<math>\vec{AB} = P7_m - P1_m = (147.2, -380.7) - (185.2, -392.7) = (-38.0, 12.0)</math>* Il vettore tra il punto <math>P1_m</math> e il punto di riferimento <math>R_p</math>: 
<math>\vec{AC} = R_p - P1_m = (185.6, -308.9) - (185.2, -392.7) = (0.4, 83.8)</math>. Calcolo del coseno dell'angolo:<math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math> 
Sostituendo i valori:<math>\cos(\theta) = \frac{990.4}{39.87 \cdot 83.80} \approx 0.2964</math>Infine, l'angolo <math>\theta</math> è calcolato tramite la funzione arccoseno:<math>\theta = \arccos(0.2964) \approx 72.80^\circ</math>.}}


qui
{{Tooltip|Definizione dei vettori: <math>\vec{AB} = 7L_m - 1L_m = (255.7, -816.0) - (345.2, -844.5) = (-89.5, 28.5)</math>, <math>\vec{AC} = R_p - 1L_m = (346.6, -727.1) - (345.2, -844.5) = (1.4, 117.4)</math>. Magnitudine di <math>\vec{AB}</math>: <math>|\vec{AB}| = \sqrt{(-89.5)^2+(28.5)^2}\approx 93.93</math>, magnitudine di <math>\vec{AC}</math>: <math>|\vec{AC}| = \sqrt{(1.4)^2 + (117.4)^2} \approx 117.41</math>. Prodotto scalare: <math>\vec{AB}\cdot \vec{AC} = (-89.5)(1.4) + (28.5)(117.4) = 2928.4</math>, <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|} = \frac{2928.4}{93.93 \cdot 117.41} \approx 0.292</math>, angolo: <math>\theta = \arccos(0.292) \approx 73.02^\circ</math>.}}

Revision as of 03:14, 26 December 2024

Molare Laterotrusivo

Il testo descrive un'analisi dettagliata dei movimenti articolari del molare ipsilaterale al condilo laterotrusivo (Figura 6 e Tabella 2). L'analisi si basa sul calcolo delle distanze tra punti e degli angoli formati tra i vettori utilizzando la trigonometria vettoriale.

Tabella 2
Tracciato masticatorio Markers Distanza (mm) Direzione

(antero-posteriore)

Direzione dinamica

(latero-mediale)

Figura 3: Rappresentazione delle distanze tra punti nel molare ipsilaterale alla laterotrusione
2 0.39 Indietro Lateralizzazione
3 2.18 Indietro Lateralizzazione
4 3.57 Indietro Lateralizzazione
5 5.68 Indietro Lateralizzazione
6 6.76 Indietro Inversione
7* 3.93 Indietro Medializzazione
8 1.15 Indietro Medializzazione


Osservando la figura e la tabella, possiamo estrapolare le distanze e le direzioni dei punti marcati. Nello specifico, la distanza del punto rispetto al punto iniziale è stata calcolata come circa , con un angolo formato tra i vettori pari a .


Definizione dei vettori: , . Magnitudine di : , magnitudine di : . Prodotto scalare: , , angolo: .