Difference between revisions of "Store:MTcondilo"

no edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Condilo Mediotrusivo'''
<P>'''Condilo Mediotrusivo'''</P>


Questi punti rappresentano posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>1M_c</math> e <math>/M_c</math>, e il segmento che unisce i punti <math>1M_c</math> e <math>R_pc</math>. Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.
Questi punti rappresentano posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>1M_c</math> e <math>/M_c</math>, e il segmento che unisce i punti <math>1M_c</math> e <math>R_pc</math>. Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.
Line 16: Line 16:
<math>Y</math>
<math>Y</math>
|-
|-
| rowspan="8" |[[File:Figura 5. finale.jpg|center|400x400px]]'''Figura 9:''' <small>Rappresentazione grafica dei markers rilevati dal 'Replicator'</small>  
| rowspan="8" |[[File:Figura 5. finale.jpg|center|400x400px]]'''Figura 9:''' <small>Rappresentazione grafica dei markers rilevati dal 'Replicator'</small><small>nella masticazione sul lato destro del paziente nell'area inccisale.</small>
<small>nella masticazione sul lato destro del paziente nell'area inccisale.</small>
|2||2.13||Protrusiva||Medializzazione
|2||2.13||Protrusiva||Medializzazione
|-
|-
Line 38: Line 37:


Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo, abbiamo una distanza dal punto di partenza di      <math>6.88</math>mm ed un angolo calcolato sull'arcoseno <math>\theta = \arccos(-0.971) \approx 166^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>14^\circ</math>, noto come '''Angolo di Bennett'''. Per approfondire la procedura matematica, vedi {{Tooltip|2=Calcolo sintetico: vettore <math>\vec{AB} = (-15.9, -60.4)</math>, vettore<math>\vec{AC} = (0.2, 52.5)</math>, prodotto scalare <math>\vec{AB} \cdot \vec{AC} = -3172.62</math>, norme <math>|\vec{AB}| = 62.93</math>, <math>|\vec{AC}| = 52.50</math>, <math>\cos(\theta) = \frac{-3172.62}{62.93 \cdot 52.50} \approx-0.971</math>, <math>\theta =\arccos(-0.971) \approx 166^\circ</math>.}}
Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo, abbiamo una distanza dal punto di partenza di      <math>6.88</math>mm ed un angolo calcolato sull'arcoseno <math>\theta = \arccos(-0.971) \approx 166^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>14^\circ</math>, noto come '''Angolo di Bennett'''. Per approfondire la procedura matematica, vedi {{Tooltip|2=Calcolo sintetico: vettore <math>\vec{AB} = (-15.9, -60.4)</math>, vettore<math>\vec{AC} = (0.2, 52.5)</math>, prodotto scalare <math>\vec{AB} \cdot \vec{AC} = -3172.62</math>, norme <math>|\vec{AB}| = 62.93</math>, <math>|\vec{AC}| = 52.50</math>, <math>\cos(\theta) = \frac{-3172.62}{62.93 \cdot 52.50} \approx-0.971</math>, <math>\theta =\arccos(-0.971) \approx 166^\circ</math>.}}
----


===Discussione sulla rototraslazione condilari===
===Discussione sulla rototraslazione condilari===
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,564

edits