Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,493
edits
(One intermediate revision by the same user not shown) | |||
Line 16: | Line 16: | ||
<math>Y</math> | <math>Y</math> | ||
|- | |- | ||
| rowspan="8" |[[File:Figura 5. finale.jpg|center|400x400px]]'''Figura 9:''' <small>Rappresentazione grafica dei markers rilevati dal 'Replicator'</small> | | rowspan="8" |[[File:Figura 5. finale.jpg|center|400x400px]]'''Figura 9:''' <small>Rappresentazione grafica dei markers rilevati dal 'Replicator'</small><small>nella masticazione sul lato destro del paziente nell'area inccisale.</small> | ||
<small>nella masticazione sul lato destro del paziente nell'area inccisale.</small> | |||
|2||2.13||Protrusiva||Medializzazione | |2||2.13||Protrusiva||Medializzazione | ||
|- | |- | ||
Line 38: | Line 37: | ||
Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo, abbiamo una distanza dal punto di partenza di <math>6.88</math>mm ed un angolo calcolato sull'arcoseno <math>\theta = \arccos(-0.971) \approx 166^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>14^\circ</math>, noto come '''Angolo di Bennett'''. Per approfondire la procedura matematica, vedi {{Tooltip|2=Calcolo sintetico: vettore <math>\vec{AB} = (-15.9, -60.4)</math>, vettore<math>\vec{AC} = (0.2, 52.5)</math>, prodotto scalare <math>\vec{AB} \cdot \vec{AC} = -3172.62</math>, norme <math>|\vec{AB}| = 62.93</math>, <math>|\vec{AC}| = 52.50</math>, <math>\cos(\theta) = \frac{-3172.62}{62.93 \cdot 52.50} \approx-0.971</math>, <math>\theta =\arccos(-0.971) \approx 166^\circ</math>.}} | Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo, abbiamo una distanza dal punto di partenza di <math>6.88</math>mm ed un angolo calcolato sull'arcoseno <math>\theta = \arccos(-0.971) \approx 166^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>14^\circ</math>, noto come '''Angolo di Bennett'''. Per approfondire la procedura matematica, vedi {{Tooltip|2=Calcolo sintetico: vettore <math>\vec{AB} = (-15.9, -60.4)</math>, vettore<math>\vec{AC} = (0.2, 52.5)</math>, prodotto scalare <math>\vec{AB} \cdot \vec{AC} = -3172.62</math>, norme <math>|\vec{AB}| = 62.93</math>, <math>|\vec{AC}| = 52.50</math>, <math>\cos(\theta) = \frac{-3172.62}{62.93 \cdot 52.50} \approx-0.971</math>, <math>\theta =\arccos(-0.971) \approx 166^\circ</math>.}} | ||
---- | |||
===Discussione sulla rototraslazione condilari=== | ===Discussione sulla rototraslazione condilari=== |
edits