Difference between revisions of "Store:ACincisivo"

 
(35 intermediate revisions by the same user not shown)
Line 1: Line 1:
<P>'''Incisal'''</P>


==Incisal==
Il paragrafo descrive un'analisi matematica dei movimenti articolari dell'incisivo sul lato lavorante. Utilizzando le coordinate di tre punti nello spazio 2D <math> 1_ I </math>, <math>7_I</math> e <math>{R_p}^+</math>, vengono calcolate le distanze lineari tra i punti, oltre all'angolo tra i segmenti che collegano questi punti.
Il paragrafo caricato descrive un'analisi matematica dei movimenti articolari dell'incisivo sul lato lavorante. Utilizzando le coordinate di tre punti nello spazio 2D (P1, P7 e H₃), vengono calcolate le distanze lineari tra i punti, oltre all'angolo tra i segmenti che collegano questi punti.


[[File:Incisal angle.jpg|left|thumb|300x300px|Figura ]]
 
<br />
 
<Center>
{| class="wikitable"
{| class="wikitable"
! colspan="5" |Tabella 3
|-
|-
!Punto
!Tracciato masticatorio
!Distanza (pixel)
!Markers
!Distanza (mm)
!Distanza (mm)
!Direzione in X  
!Direzione  
(antero-posteriore)
<math>X</math>
!Direzione in Y  
!Direzione dinamica
(latero-mediale)
<math>Y</math>
|-
|-
| rowspan="8" |[[File:Figura 34finale.jpg|center|400x400px|Figura 3: Rappresentazione delle distanze tra punti dell'incisivo]]'''Figura 7:''' <small>Rappresentazione grafica dei markers rilevati dal 'Replicator'</small> <small>nella masticazione sul lato destro del paziente nell'area inccisale.</small>
|2
|2
|23.4
|0.69
|2.34
|Retrusiva
|Indietro
|Lateralizzazione
|Laterale
|-
|-
|3
|3
|45.65
|2.30
| 4.57
|Retrusiva
|Indietro
|Lateralizzazione
|Laterale
|-
|-
|4
|4
|109.56
|4.61
|10.96
|Retrusiva
|Indietro
|Lateralizzazione
|Laterale
|-
|-
|5
|5
| 202.77
|7.58
|20.28
|Protrusivo
|Indietro
|Lateralizzazione
|Laterale
|-
|-
|6
|6
|218.02
|8.54
|21.80
|Retrusiva
|Indietro
|Inversione
|Laterale
|-
|-
| 7
|7*
|138.42
|5.12
|13.84
|Retrusiva
|Indietro
|Medializzazione
|Laterale
|-
|-
|8
|8
|26.41
|1.75
|2.64
|Retrusiva
|Indietro
|Medializzazione
|Laterale
|-
| colspan="4" |
|}
|}
<br />Dalla tabella, innanzitutto, dobbiamo calcolare i vettori {{Tooltip|2=Descrizione focalizzata dell'analisi matematica dei punti: Punti e coordinate coinvolte. Nel contesto della nostra analisi, abbiamo tre punti nello spazio 2D di interesse: Coordinate <math>P1_{i}</math> del punto 1 dell'incisivo sul lato lavorante: <math>(631.5, -1151.8)</math>, Coordinate <math>P7_{i}</math> del punto 7 dell'incisivo sul lato lavorante: <math>(509.6, -1139.9)</math>, Coordinate <math>H3_{i}</math> del punto di riferimento dell'incisivo sul lato lavorante: <math>(634.2, -921)</math>. Questi punti rappresentano posizioni specifiche all'interno di un sistema articolare che stiamo studiando. L'obiettivo è calcolare l'angolo tra il segmento che unisce i punti <math>P1_{i}</math> e <math>P7_{i}</math> e il segmento che unisce i punti <math>P1_{i}</math> e <math>H3_{i}</math>. Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio. Iter matematico per il calcolo dell'angolo: L'angolo tra due segmenti può essere calcolato utilizzando la trigonometria vettoriale e, in particolare, il prodotto scalare. Questo metodo è utile per determinare la relazione angolare tra due movimenti distinti nello spazio. {{Tooltip|Definizione dei vettori:|Il vettore tra il punto <math>P1_{i}</math> e il punto <math>P7_{i}</math>: <math>\vec{AB} = P7_{i} - P1_{i} = (509.6, -1139.9) - (631.5, -1151.8) = (-121.9, 11.9)</math>, Il vettore tra il punto 1<sub>Lm</sub> e il punto H₃: <math>\vec{AC} = H3_{i} - P1_{i} = (634.2, -921) - (631.5, -1151.8) = (2.7, 230.8)</math>. Prodotto scalare: Il prodotto scalare tra i vettori <math>\vec{AB}</math> e <math>\vec{AC}</math> è dato dalla formula: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>, e sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-121.9) \cdot (2.7) + (11.9) \cdot (230.8) = -329.13 + 2746.52 = 2417.39</math>. Calcolo delle norme: Le norme (lunghezze) dei due vettori sono calcolate con la formula della lunghezza del vettore: <math>|\vec{AB}| = \sqrt{AB_x^2 + AB_y^2} = \sqrt{(-121.9)^2 + (11.9)^2} = \sqrt{15004.02} \approx 122.48</math> e <math>|\vec{AC}| = \sqrt{AC_x^2 + AC_y^2} = \sqrt{53275.93} \approx 230.85</math>|2}} Calcoliamo i vettori rappresentativi dei segmenti tra i punti: Calcolo dell'angolo: Usando la formula per il coseno dell'angolo tra i due vettori: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math>, otteniamo <math>\cos(\theta) = \frac{2417.39}{28252.53} \approx 0.0856</math>. Infine, l'angolo <math>\theta</math> è calcolato tramite la funzione arcoseno: <math>\theta = \arccos(0.0856) \approx 85.09^\circ</math>. Motivo dell'analisi: L'obiettivo dell'analisi è determinare l'angolo tra due movimenti all'interno di un sistema articolare, in particolare nell'area di studio della cinematica masticatoria. La comprensione di questi angoli ci consente di valutare la dinamica mandibolare, modellare la biomeccanica del sistema masticatorio e confrontare con angoli standard. Questo calcolo è fondamentale per fornire una descrizione matematica precisa della cinetica mandibolare e per migliorare la modellazione biomeccanica di strutture orofacciali, cruciali per la diagnosi e l'intervento clinico.}} che rappresentano i segmenti tra i punti:
</Center>
 
Per quanto riguarda i tracciati nell'area dell'incisivo tra il punto <math>1I</math> e <math>7I</math>, la distanza risulta essere di <math>5.12_{mm}</math> con un angolo approssimativamente pari a <math>85.1^\circ</math>. Per approfondimenti di calcolo, vedi la spiegazione dettagliata qui
{{Tooltip|2=Coordinate dei punti: <math>1I = (631.5, -1151.8)</math>, <math>7I = (509.6, -1139.9)</math>, <math>R_p^+ = (634.3, -912.8)</math>. Vettori: <math>\vec{1I7I} = (-121.9, 11.9)</math>, <math>\vec{1IR_p^+} = (2.8, 239)</math>. Norme: <math>|\vec{1I7I}| = 122.49</math>, <math>|\vec{1IR_p^+}| = 238.95</math>. Prodotto scalare: <math>\vec{1I7I} \cdot \vec{1IR_p^+} = 2502.78</math>. Coseno: <math>\cos(\theta) = \frac{2502.78}{122.49 \cdot 238.95} \approx 0.0855</math>. Angolo: <math>\theta = \arccos(0.0855) \approx 85.1^\circ</math>.}}
 
----

Latest revision as of 18:57, 26 December 2024

Incisal

Il paragrafo descrive un'analisi matematica dei movimenti articolari dell'incisivo sul lato lavorante. Utilizzando le coordinate di tre punti nello spazio 2D , e , vengono calcolate le distanze lineari tra i punti, oltre all'angolo tra i segmenti che collegano questi punti.


Tabella 3
Tracciato masticatorio Markers Distanza (mm) Direzione

Direzione dinamica

Figura 3: Rappresentazione delle distanze tra punti dell'incisivo
Figura 7: Rappresentazione grafica dei markers rilevati dal 'Replicator' nella masticazione sul lato destro del paziente nell'area inccisale.
2 0.69 Retrusiva Lateralizzazione
3 2.30 Retrusiva Lateralizzazione
4 4.61 Retrusiva Lateralizzazione
5 7.58 Protrusivo Lateralizzazione
6 8.54 Retrusiva Inversione
7* 5.12 Retrusiva Medializzazione
8 1.75 Retrusiva Medializzazione

Per quanto riguarda i tracciati nell'area dell'incisivo tra il punto e , la distanza risulta essere di con un angolo approssimativamente pari a . Per approfondimenti di calcolo, vedi la spiegazione dettagliata qui  Info.pngCoordinate dei punti: , , . Vettori: , . Norme: , . Prodotto scalare: . Coseno: . Angolo: .