Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,490
edits
Line 176: | Line 176: | ||
Data la dissociazione temporale tra la manifestazione dei sintomi e i tassi di demielinizzazione e rimielinizzazione, i processi omeostatici si verificano senza dubbio all'interno degli assoni, che includono la ridistribuzione dei canali ionici nelle placche demielinizzate. <ref>Rasminsky M. Hyperexcitability of pathologically myelinated axons and positive symptoms in multiple sclerosis. Adv. Neurol. 1981;31:289–297.[PubMed] [Google Scholar]</ref><ref>Ulrich J., Groebke-Lorenz W. The optic nerve in multiple sclerosis: A morphological study with retrospective clinicopathological correlation. Neuro-Ophthalmology. 1983;3:149–159. doi: 10.3109/01658108309009732.[CrossRef] [Google Scholar]</ref> Ma data la diversità dei canali ionici espressi da diversi assoni e solo una conoscenza frammentaria di come cambiano i livelli di espressione, costruire modelli dettagliati per studiare quei processi omeostatici è problematico. Soprattutto in queste condizioni, modelli altamente semplificati possono aiutare a identificare i principi fondamentali, come esemplificato dall'uso congiunto di modelli HH modificati e di Morris-Lecar. <ref name=":9" /><ref name=":10" /> I risultati di questi studi hanno suggerito una semplice spiegazione per l'ampiezza dei sintomi incontrati durante la demielinizzazione, rivelando che il rapporto tra Na+ e la conduttanza di K+, g(Na)/g(L), agiva come un interruttore a quattro vie controllando i modelli di eccitabilità che incluso fallimento della propagazione AP, normale propagazione AP, AD e picchi spontanei. | Data la dissociazione temporale tra la manifestazione dei sintomi e i tassi di demielinizzazione e rimielinizzazione, i processi omeostatici si verificano senza dubbio all'interno degli assoni, che includono la ridistribuzione dei canali ionici nelle placche demielinizzate. <ref>Rasminsky M. Hyperexcitability of pathologically myelinated axons and positive symptoms in multiple sclerosis. Adv. Neurol. 1981;31:289–297.[PubMed] [Google Scholar]</ref><ref>Ulrich J., Groebke-Lorenz W. The optic nerve in multiple sclerosis: A morphological study with retrospective clinicopathological correlation. Neuro-Ophthalmology. 1983;3:149–159. doi: 10.3109/01658108309009732.[CrossRef] [Google Scholar]</ref> Ma data la diversità dei canali ionici espressi da diversi assoni e solo una conoscenza frammentaria di come cambiano i livelli di espressione, costruire modelli dettagliati per studiare quei processi omeostatici è problematico. Soprattutto in queste condizioni, modelli altamente semplificati possono aiutare a identificare i principi fondamentali, come esemplificato dall'uso congiunto di modelli HH modificati e di Morris-Lecar. <ref name=":9" /><ref name=":10" /> I risultati di questi studi hanno suggerito una semplice spiegazione per l'ampiezza dei sintomi incontrati durante la demielinizzazione, rivelando che il rapporto tra Na+ e la conduttanza di K+, g(Na)/g(L), agiva come un interruttore a quattro vie controllando i modelli di eccitabilità che incluso fallimento della propagazione AP, normale propagazione AP, AD e picchi spontanei. | ||
Ulteriori studi con questo modello hanno suggerito il potenziale di competizione o cooperazione tra diverse regioni dello stesso neurone. La cooperazione tra siti remoti di spiking ectopico consente di iniziare e mantenere l'AD in posizioni diverse all'interno di un singolo assone, fornendo così una spiegazione convincente per le discontinuità temporali e spaziali del dolore e altri sintomi presentati dai pazienti con SM. Sorprendentemente, in un recente studio sugli assoni demielinizzati in un modello di topo cuprizone, sono state osservate prove sperimentali per una ridistribuzione dei canali ionici dal nodo di Ranvier, una maggiore eccitabilità ectopica insieme agli AP propagati antidromicamente dalla placca demielinizzata, nonché uno spostamento compensatorio nell'eccitabilità delle membrane prossimali al soma. Tutte queste osservazioni concordano o sono coerenti con le previsioni del modello computazionale di Coggan e colleghi e implicano il successo dell'approccio computazionale per guidare gli studi di laboratorio. | Ulteriori studi con questo modello hanno suggerito il potenziale di competizione o cooperazione tra diverse regioni dello stesso neurone.<ref name=":11" /> La cooperazione tra siti remoti di spiking ectopico consente di iniziare e mantenere l'AD in posizioni diverse all'interno di un singolo assone, fornendo così una spiegazione convincente per le discontinuità temporali e spaziali del dolore e altri sintomi presentati dai pazienti con SM. Sorprendentemente, in un recente studio sugli assoni demielinizzati in un modello di topo cuprizone, sono state osservate prove sperimentali per una ridistribuzione dei canali ionici dal nodo di Ranvier, una maggiore eccitabilità ectopica insieme agli AP propagati antidromicamente dalla placca demielinizzata, nonché uno spostamento compensatorio nell'eccitabilità delle membrane prossimali al soma.<ref>Hamada M.S., Kole M.H. Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability. J. Neurosci. 2015;35:7272–7786. [PMC free article] [PubMed] [Google Scholar]</ref> Tutte queste osservazioni concordano o sono coerenti con le previsioni del modello computazionale di Coggan e colleghi e implicano il successo dell'approccio computazionale per guidare gli studi di laboratorio. | ||
Inoltre, questi modelli semplificati hanno consentito l'applicazione di strumenti matematici per esaminare i meccanismi non lineari mediante i quali l'AD viene avviato e terminato. L'analisi della biforcazione ha rivelato la sottostante bistabilità dell'eccitabilità degli assoni in condizioni patologiche, nonché i fattori che controllano la transizione da uno stato attrattore a un altro. L'AD, ad esempio, richiede una corrente lenta verso l'interno che consenta due stati attrattori stabili, uno corrispondente alla quiescenza e l'altro a picchi ripetitivi (un ciclo limite). La cessazione dell'AD è stata spiegata dalla distruzione dell'attrattore associato a picchi ripetitivi. Ciò si è verificato quando un feedback negativo ultra-lento sotto forma di accumulo intracellulare di Na+ ha causato la distruzione dello stato attrattore del ciclo limite [58]. Altri studi che utilizzano l'analisi della biforcazione suggeriscono che i cambiamenti della concentrazione ionica possono introdurre dinamiche lente che possono essere importanti per comprendere gli esiti patologici [ | Inoltre, questi modelli semplificati hanno consentito l'applicazione di strumenti matematici per esaminare i meccanismi non lineari mediante i quali l'AD viene avviato e terminato. <ref name=":9" /><ref name=":10" /><ref name=":11" /> L'analisi della biforcazione ha rivelato la sottostante bistabilità dell'eccitabilità degli assoni in condizioni patologiche, nonché i fattori che controllano la transizione da uno stato attrattore a un altro. L'AD, ad esempio, richiede una corrente lenta verso l'interno che consenta due stati attrattori stabili, uno corrispondente alla quiescenza e l'altro a picchi ripetitivi (un ciclo limite). La cessazione dell'AD è stata spiegata dalla distruzione dell'attrattore associato a picchi ripetitivi. Ciò si è verificato quando un feedback negativo ultra-lento sotto forma di accumulo intracellulare di Na+ ha causato la distruzione dello stato attrattore del ciclo limite [58]. Altri studi che utilizzano l'analisi della biforcazione suggeriscono che i cambiamenti della concentrazione ionica possono introdurre dinamiche lente che possono essere importanti per comprendere gli esiti patologici. <ref name=":19" /><ref>Yu N., Morris C.E., Joós B., Longtin A. Spontaneous excitation patterns computed for axons with injury-like impairments of sodium channels and Na/K pumps. PLoS Comput. Biol. 2012;8:e1002664. doi: 10.1371/journal.pcbi.1002664. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> | ||
==== Modellazione su piccola scala ==== | |||
Gli studi sopra menzionati evidenziano l'importanza dei cambiamenti della concentrazione di ioni, ma ciascuno di essi ha considerato tali cambiamenti solo su una scala relativamente progressiva. In confronto, lo studio di Lorpreore et al.<ref>Lopreore C.L., Bartol T.M., Coggan J.S., Keller D.X., Sosinsky G.E., Ellisman M.H., Sejnowski T.J. Computational modeling of three-dimensional electrodiffusion in biological systems: Application to the node of Ranvier. Biophys. J. 2008;95:2624–2635. doi: 10.1529/biophysj.108.132167.</ref> ha affrontato l'arduo problema della modellazione dell'elettrodiffusione tridimensionale dei flussi ionici nei micro e nanodomini che circondano i canali ionici al nodo di Ranvier. In questo modello unico, i flussi di ioni sono calcolati mediante equazioni di Poisson-Nernst-Planck con tecniche di volume finito. I flussi e i potenziali elettrici sono stati valutati all'interno di voxel formati da una maglia Delaunay-Voronoi dell'assone interno ed esterno vicino alla membrana. È importante sottolineare che l'algoritmo è stato convalidato ei risultati concordati con le previsioni del modello di cavo. La divergenza dalle previsioni del modello di cavo a dimensioni di cluster più piccole ha rivelato l'importanza del campo elettrico di ciascun canale. | |||
L'esempio sopra evidenzia il punto che i modelli possono simulare più dei canali ionici e del potenziale di membrana. In effetti, i modelli possono e devono scavare più a fondo nei meccanismi biofisici come l'elettro-diffusione e nei percorsi di segnalazione che alla fine servono a regolare la funzione e l'espressione del canale ionico. Un metodo promettente chiamato Biochemical Systems Theory (BST) potrebbe essere utile in futuro per il pre-screening degli effetti dei farmaci a livello sistemico. Broome e Coleman <ref>Broome T.M., Cole.man R.A. A mathematical model of cell death in multiple sclerosis. J. Neurosci. Methods. 2011;201:420–425. doi: 10.1016/j.jneumeth.2011.08.008. [PubMed] [CrossRef] [Google Scholar]</ref> hanno dimostrato il potere di questa tecnica modellando diversi percorsi biochimici nei neuroni associati alla morte cellulare durante la SM, tra cui la formazione di specie reattive dell'ossigeno e dell'azoto, la dinamica del Ca2+, la formazione di complessi di morte, il rilascio del fattore apoptotico e le risposte infiammatorie insieme a tre diversi stati: normale, malattia e trattamento della SM.<ref>Ridsdale R.A., Beniac D.R., Tompkins T.A., Moscarello M.A., Harauz G. Three-dimensional structure of myelin basic protein. II. Molecular modeling and considerations of predicted structures in multiple sclerosis. J. Biol. Chem. 1997;272:4269–4275. doi: 10.1074/jbc.272.7.4269. [PubMed] [CrossRef] [Google Scholar]</ref> A livello atomico, è stato realizzato un modello computazionale della struttura della proteina basica della mielina (MBP) poiché le modifiche post-traduzionali della MBP possono contribuire alla demielinizzazione nella SM. È importante comprendere la sua struttura 3D per prevedere i siti di interazione con altre molecole, ma una struttura cristallina per questa proteina potrebbe non essere mai misurata direttamente. Questo tipo di modellazione può, quindi, rappresentare un modo efficace per prevedere la struttura combinando la conoscenza della sequenza amminoacidica con informazioni provenienti da proteine simili. La sfida e il vero potere della modellazione sta nel collegare meccanismi che operano su scale molto diverse, dalla struttura molecolare al sistema nervoso nel suo complesso, e oltre, per affrontare il modo in cui il sistema nervoso interagisce con il sistema immunitario. | |||
Modelli di fattori immunitari. Sebbene esistano numerosi modelli computazionali del sistema immunitario,<ref>Pigozzo A.B., Macedo G.C., Santos R.W., Lobosco M. On the computational modeling of the innate immune system. BMC Bioinform. 2013;14 doi: 10.1186/1471-2105-14-S6-S7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> quelli relativi alla SM tipicamente modellano reti di interazione genetica, rappresentate come insiemi di equazioni differenziali ordinarie (ODE) o reti booleane. Un modello di biologia dei sistemi di un possibile meccanismo cellulare della RRMS ha riscontrato una rottura nell'omeostasi delle cellule effettrici (Teff) e delle cellule T regolatorie (Treg). <ref>Doerck S., Göbel K., Weise G., Schneider-Hohendorf T., Reinhardt M., Hauff P., Schwab N., Linker R., Mäurer M., Meuth S.G., et al. Temporal pattern of ICAM-I mediated regulatory T cell recruitment to sites of inflammation in adoptive transfer model of multiple sclerosis. PLoS ONE. 2010;5:e15478. doi: 10.1371/journal.pone.0015478. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref><ref>De Mendizábal N.V., Carneiro J., Solé R.V., Goñi J., Bragard J., Martinez-Forero I., Martinez-Pasamar S., Sepulcre J., Torrealdea J., Bagnato F., et al. Modeling the effector-regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis. BMC Syst. Biol. 2011;5doi: 10.1186/1752-0509-5-114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> Modificando i parametri nel ciclo di feedback Teff-Treg, sotto il continuo stimolo esterno stocastico degli antigeni, il modello ha riprodotto ricadute immunitarie spontanee e apparentemente stocastiche. Il danno irreversibile di ogni episodio si accumula nel tempo. Le nuove previsioni includono il suggerimento che la tempistica dell'immunoterapia Treg nel ciclo di risposta immunitaria è fondamentale per determinare se l'intervento è benefico o deleterio. | |||
Modelli di disfunzione mitocondriale. Come accennato in precedenza, la mielina consente una conduzione AP più efficiente dal punto di vista energetico lungo l'assone. Le maggiori richieste di energia poste sull'assone demielinizzato rappresentano un'altra sfida per il neurone afflitto. Oltre alla perdita della conduzione saltatoria, ci sono prove crescenti di un ruolo critico per astrociti e oligodendrociti nel fornire energia ai neuroni e questo processo è stato anche oggetto di modellazione computazionale.<ref>Jolivet R., Coggan J.S., Allaman I., Magistretti P.J. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Comput. Biol. 2015;11:e1004036. doi: 10.1371/journal.pcbi.1004036. [PMC free article] [PubMed] [CrossRef]</ref> | |||
Ci sono molti modi in cui la funzione mitocondriale può andare storta e le vie compensatorie sono ugualmente complicate. <ref name=":8" /><ref name=":12" /><ref name=":13" /> Ad esempio, la disfunzione mitocondriale può essere radicata nella segnalazione perturbata del Ca2+ all'interno dei mitocondri, nei gradienti protonici interrotti o nella catena elettronica, nello squilibrio di riduzione-ossidazione e nelle conseguenze della ridotta disponibilità di ATP, a livello locale e globale. Modelli multiscala del cuore, per esempio, sono stati usati per collegare la segnalazione alterata del Ca2+ mitocondriale all'aritmia [60]. Utilizzando la modellazione della rete mitocondriale, questo studio ha dimostrato come anche un numero leggermente eccessivo di specie reattive dell'ossigeno possa innescare un collasso a livello cellulare del potenziale della membrana mitocondriale. Questo è un ottimo esempio di come un modello computazionale possa collegare processi che si verificano a diversi livelli, e sono proprio questi collegamenti che devono essere stabiliti nel campo delle malattie da demielinizzazione. | |||
=== | === Collegamenti mancanti e necessità di integrazione === | ||
Nel campo delle malattie demielinizzanti, gli sforzi di modellizzazione si sono tradizionalmente concentrati su modelli di assoni volti a spiegare vari aspetti dell'eccitabilità. Ma come delineato sopra, quei modelli hanno subito un'enorme evoluzione in termini di complessità. Nel processo, i modelli a diverse scale biologiche hanno iniziato a fondersi. Ad esempio, i modelli hanno ora iniziato ad affrontare la regolazione delle concentrazioni di ioni e le relative conseguenze per i lenti cambiamenti di eccitabilità, il consumo di energia e la tossicità. Sarà necessario un approccio computazionale per integrare eziologie parallele e multifattoriali associate al declino cognitivo come la segnalazione del sistema immunitario, il metabolismo energetico, le interazioni tra materia grigia e bianca e reti genetiche.<ref>Zeis T., Allaman I., Gentner M., Schroder K., Tschopp J., Magistretti P.J., Schaeren-Wiemers N. Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling. Brain Behav. Immun. 2015;48:315–325. doi: 10.1016/j.bbi.2015.04.013.[PubMed] [CrossRef] [Google Scholar]</ref> Questi continui sforzi stanno iniziando a scoprire i circuiti di feedback vasti e interconnessi che operano su un'ampia gamma di scale spaziali e temporali. Detto questo, tali sforzi sono ancora agli inizi e permangono ampie lacune nella modellazione delle malattie demielinizzanti. È più facile descrivere ciò che è stato modellato rispetto a ciò che non lo è. Un modello veramente integrato che coinvolge più tipi di cellule che affronta tutti i fattori eziologici ipotizzati rimane non realizzato. Tra gli obiettivi inesplorati o poco esplorati ma potenzialmente utili per la modellazione ci sono la patologia della materia grigia, gli strati acquosi della guaina mielinica, il metabolismo energetico e, forse soprattutto, la modellazione multiscala o integrata. Si dovrebbe riconoscere che gli strumenti necessari esistono in altri campi di studio e possono, quindi, essere facilmente applicati allo studio delle malattie da demielinizzazione. | |||
=== Conclusioni === | |||
La normale funzione fisiologica del sistema nervoso centrale o del sistema nervoso centrale si basa su un'interazione altamente regolata di neuroni, glia, vascolarizzazione e cellule immunitarie. Questo processo comprende e integra numerosi componenti cellulari e di segnalazione che producono un insieme dinamico e computazionale. Quando una parte va storta, l'intero sistema è costretto a compensare. Anche quando la compensazione riesce a salvare le conseguenze più evidenti della demielinizzazione, alcuni processi potrebbero non tornare a uno stato completamente normale, il che può portare a problemi su scale temporali più lunghe. I sintomi risultanti sono una miscela confusa di cambiamenti diretti e compensatori che si evolvono continuamente. La complessità complessiva ha dimostrato di essere intrattabile per un'efficiente dissezione sperimentale. L'applicazione di tecniche di modellazione computazionale rappresenta un approccio inestimabile per aiutare a rompere l'impasse e generare una nuova era di comprensione e scoperta. | |||
== Ringraziamenti == | |||
Supporto fornito dal Canadian Institutes of Health Research New Investigator Award e dall'Ontario Early Researcher Award (SAP). Ringraziamo Heiki Blum per l'assistenza con la preparazione della figura. | |||
== Contributi dell'autore == | |||
Tutti gli autori hanno contribuito alla stesura di questo manoscritto. I dati sono stati forniti da Sven G. Meuth. | |||
== Conflitto di interessi == | |||
Gli autori dichiarano assenza di conflitto di interesse. | |||
== | == Informazioni sull'articolo == | ||
Int J Mol Sci. settembre 2015; 16(9): 21215–21236. Pubblicato online il 7 settembre 2015 doi: 10.3390/ijms160921215 PMCID: PMC4613250 PMID: 26370960 Jay S. Coggan,1,* Stefan Bittner,2 Klaus M. Stiefel,1 Sven G. Meuth,2 and Steven A. Prescott3,4 Christoph Kleinschnitz , Academic Editor 1NeuroLinx Research Institute, La Jolla, CA 92039, USA; E-Mail: gro.xniloruen@sualk 2Dipartimento di Neurologia, Istituto di Fisiologia, Universitätsklinikum Münster, 48149 Münster, Germania; E-Mail: moc.kooltuo@renttib-nafets (S.B.); ed.retsneumku@htuem.nevs (S.G.M.) 3Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; E-Mail: ac.sdikkcis@ttocserp.evets 4Dipartimento di Fisiologia e Istituto di Biomateriali e Ingegneria Biomedica, Università di Toronto, Toronto, ON M5G 1X8, Canada | |||
Autore a cui indirizzare la corrispondenza; E-Mail: gro.xniloruen@yaj; Tel.: +1-858-243-6720. | |||
Ricevuto il 26 maggio 2015; Accettato il 25 agosto 2015. Copyright © 2015 degli autori; licenziatario MDPI, Basilea, Svizzera. Questo articolo è un articolo ad accesso aperto distribuito secondo i termini e le condizioni della licenza Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).). Gli articoli dell'International Journal of Molecular Sciences sono forniti qui per gentile concessione del Multidisciplinary Digital Publishing Institute (MDPI) | |||
Copyright © 2015 | |||
== Bibliography == | == Bibliography == |
edits