Store:Asse Cerniera Verticale parte 3
La rappresentazione spaziale dei markers etichettati come punto 1,2,3.....8 ci ha restituito distanze in millimteri tra i punti ed il punto 1 (massima intercuspidazione) considerato come riferimento e contestualmente gli angoli. Rimane ora da razionalizzare il contentuo geometrico matematico estrapolandone il concetto di velocità nelle diverse aree del sistema ( condili e punti occlusali) e la rappresentazione del fenomeno cinematico attraverso una 'conica'. Solo dopo formalizzato questo argomento si potranno generare delle asserzioni sul tema specifico.
Analisi delle Velocità nella cinematica masticatoria
Velocità Lineari e Angolari
Il movimento mandibolare rappresenta una combinazione complessa di traslazioni lineari e rotazioni angolari. Questi due fenomeni possono essere descritti matematicamente come segue:
- Velocità Lineare: È la variazione della posizione di un punto nello spazio rispetto al tempo. Per un punto con coordinate , la velocità lineare è definita come: . La velocità lineare è particolarmente significativa nei movimenti traslatori, come quelli del condilo mediotrusivo, che si sposta lungo traiettorie più lunghe piuttosto che lo spostamento lineare dal punto del condilo laterotrusivo.
- Velocità Angolare: È la variazione dell’angolo di rotazione attorno a un asse rispetto al tempo. Considerando un angolo , la velocità angolare è definita come: . Questa componente predomina nei movimenti di rotazione del condilo laterotrusivo dove l’arco descritto dalla rotazione è più rilevante rispetto alla traslazione.
Relazione Geometrica tra Velocità Lineare e Angolare
Se un punto si muove lungo un arco di raggio , le velocità lineare e angolare sono legate dalla relazione:
.
In ambito mandibolare:
Il condilo laterotrusivo, con un raggio più piccolo, sviluppa una velocità angolare maggiore.
Il condilo mediotrusivo, con un raggio maggiore, mostra una velocità lineare più elevata per sincronizzarsi con il condilo laterotrusivo.
Utilizzando i dati relativi a distanze e angoli riportati in tabelle 1,2,3,4 e 5 e nello specifico, per semplificazione soltanto la distanza tra il punto abbiamo che sul Condilo Laterotrusivo ) la distanza percorsa è di con un angolo formato tra i punti occlusali con vertice in calcolato in per distinguerlo da e che rimane simile per tutti le aree del sistema ( condilo mediotrusivo, molari ed incisivo). Il moto è prevalentemente rotatorio, con una componente traslatoria ridotta.
La tebella riasume i parametri per la valitazione analitica delle velocità:
Marker | Distanza
|
Angolo
|
Velocità |
---|---|---|---|
Nel Condilo Mediotrusivo (Mc), invece, la distanza percorsa è con un angolo: . Il movimento è prevalentemente traslatorio, suggerendo una velocità lineare più elevata.
nell'area Incisivi e Molari**:
Analisi del Movimento Simultaneo verso il Punto 1
Fattori Considerati
- Sincronizzazione Temporale**
Entrambi i condili devono completare il movimento di ritorno nello stesso intervallo di tempo (), indipendentemente dalla distanza percorsa.
- Differenze nelle Distanze**
- Condilo laterotrusivo (): . - Condilo mediotrusivo (): .
- Velocità di Ritorno Necessaria**
La velocità del deve essere proporzionalmente maggiore per compensare la maggiore distanza percorsa nello stesso tempo.
Calcolo della Velocità Necessaria
Assumiamo che il tempo di ritorno () sia governato dal condilo , la cui velocità media di ritorno è basata sul dato iniziale ():
Per il condilo , la velocità media necessaria () è:
Interpretazione Biomeccanica
- Velocità Significativamente Maggiore nel **
Il condilo deve operare con una velocità media di , quasi tripla rispetto a quella del (). Questo incremento è necessario per sincronizzarsi con il condilo laterotrusivo, che percorre una distanza minore nello stesso intervallo di tempo.
- Ruolo Funzionale del **
La velocità più alta del riflette il suo ruolo dinamico e adattativo. Questo condilo deve compensare: - La maggiore distanza del tragitto. - La necessità di stabilizzare il movimento mandibolare e mantenere un equilibrio biomeccanico.
- Efficienza del **
Il condilo , percorrendo una distanza più breve, opera a velocità inferiori, indicando una maggiore stabilità durante i movimenti masticatori laterali.
Conclusione
La maggiore distanza percorsa dal richiede un incremento significativo della velocità di ritorno, raggiungendo , per sincronizzarsi con il condilo . Questo fenomeno è un chiaro esempio di adattamento biomeccanico, dove la mandibola bilancia le differenze di distanza e velocità tra i due condili per garantire una chiusura armonica e simultanea.
Rappresentazione cinematica attraverso una conica
Per descrivere la forma ellittica dei tracciati dentali generati dal moto rototraslazionale dei condili, utilizziamo una conica (ellisse) sovrapposta a punti specifici. Questo modello evidenzia il contributo dei movimenti condilari e delle distanze occlusali nella generazione dei tracciati pseudoellittici.
Supponiamo di analizzare il tracciato del molare ipsilaterale durante la laterotrusione, con cinque punti distinti: .
L'equazione generale dell'ellisse centrata nell'origine è:
Per determinare i semiassi e , minimizziamo la funzione di costo:
Questa ellisse rappresenta il tracciato pseudoellittico, dove:
- Un valore maggiore di indica una maggiore influenza del condilo laterotrusivo.
- Un valore minore di suggerisce un'influenza ridotta del condilo mediotrusivo o delle distanze occlusali.
Questo metodo è applicabile anche ai tracciati incisali e molari controlaterali, permettendo una rappresentazione formale e quantitativa dei tracciati complessi.
Descrizione della funzione 'Conica'
Una conica è rappresentata da un'equazione generale in due variabili \(x\) e \(y\), definita come:
I coefficienti definiscono la geometria della conica e sono derivati dai punti dati appartenenti alla conica. Di seguito, una descrizione dettagliata di ogni termine:
Significato dei Coefficienti
-: Coefficiente del termine , che influisce sulla curvatura della conica lungo l'asse .
: Coefficiente del termine , responsabile della rotazione della conica.
: Coefficiente del termine , che influisce sulla curvatura della conica lungo l'asse .
Coefficiente del termine , che influisce sullo spostamento orizzontale.
Coefficiente del termine , che influisce sullo spostamento verticale.
: Termine costante che determina la posizione della conica rispetto all'origine.
Determinazione dei Coefficienti dai Punti
Per determinare i coefficienti, si usa un sistema lineare di equazioni derivato dall'inserimento dei punti dati nella forma generale della conica. Dato punti , ogni punto genera un'equazione:
Se si conoscono almeno 5 punti distinti, il sistema lineare può essere risolto per determinare .
Metodo di Calcolo
a) Costruzione della Matrice del Sistema Lineare:
I punti dati vengono usati per costruire un sistema lineare:
Questa matrice è quadrata se si hanno esattamente 6 punti e può essere risolta per determinare i coefficienti
b) Determinazione di ::
Il termine è un risultato diretto della risoluzione del sistema lineare, non ha un significato specifico isolato, ma contribuisce alla posizione della conica. Se la conica è centrata sull'origine, può assumere valori specifici (ad esempio, 0 per semplificazioni).
Discriminante della Conica
Il discriminante della conica si calcola come:
Il tipo di conica dipende dal valore di \(\Delta\):
: Ellisse.
: Parabola.
Iperbole.
Calcolo delle Coniche
Conica del Molare Laterotrusivo
Punti forniti:
.
Equazione della conica:
.
Coefficiente calcolati:
.
Discriminante:
.
Conclusione:
Poiché , la conica è un’ellisse.
Conica dell'Incisivo
Punti forniti: .
Equazione della conica:
.
Coefficiente calcolati:
.
Discriminante:
.
Conclusione: Poiché , la conica è un’ellisse (ellisse più grande rispetto alla precedente).
Conica del Molare Mediotrusivo
Punti forniti:
.
Equazione della conica:
.
Coefficiente calcolati:
.
Discriminante:
.
Conclusione:
Poiché , la conica è un’iperbole.
Applicazione della conica per individuare punti cinematici
La conica permette di prevedere il punto condilare laterotrusivo () conoscendo due punti di riferimento (iniziale e finale). Questo approccio consente di analizzare deviazioni e adattamenti nei tracciati mandibolari reali, migliorando l’interpretazione della cinematica mandibolare.