Store:Asse Cerniera Verticale parte 2

Revision as of 19:24, 2 February 2025 by Gianni (talk | contribs)
Go to top

Rappresentazione spazio temporale dei markers

Condilo Laterotrusivo

Questo paragrafo descrive il calcolo delle distanze e degli angoli tra segmenti in un piano 2D, applicati alla cinematica mandibolare. In particolare, si analizzano i movimenti articolari dei condili durante il ciclo masticatorio, rappresentati nella Figura 5 e nella Tabella 1.

Tabella 1
Tracciato masticatorio Markers Distanza (mm) Direzione Direzione Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y}
Figura 5: Marker sovrapposti in Geogebra sul tracciato del condilo laterotrusivo 2 1.734 Protrusiva Parallela.
3 4.99 Protrusiva Lateralizzazione
4 6.59 Protrusiva Lateralizzazione
5 3.66 Inversione Inversione
6 0.923 Retrusiva Lateralizzazione
7* 0.898 Protrusiva Medializzazione
8 0.257 Protrusiva Medializzazione

Dalla figura e dalla tabella emerge che il punto   rappresenta l'inversione del moto condilare, con il passaggio verso un percorso mediale diretto alla massima intercuspidazione. La distanza tra il punto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7L_c} e Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1L_c} , pari a circa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.898 \, \text{mm}} , definisce il movimento di Bennett.

La direzione angolare è stata calcolata come: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta = 131.87^\circ} e  .

Per approfondire, il calcolo dettagliato è riportato di seguito:   Calcolo dettagliato: distanza tra Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1 = (58.3, -50.9)} e Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_7 = (44, -34.9)} , distanza euclidea Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{(-14.3)^2 + (16)^2} \approx 21.47 \, \text{pixel}} , convertita in mm come  , angolo Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta = \arccos(-0.6665) \approx 131.87^\circ} .

Molare Laterotrusivo

Questo paragrafo analizza i movimenti articolari del molare ipsilaterale al condilo laterotrusivo, basandosi sul calcolo delle distanze tra punti e degli angoli tra vettori mediante trigonometria vettoriale (Figura 6 e Tabella 2).

Tabella 2
Tracciato masticatorio Markers Distanza (mm) Direzione Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} Direzione dinamica Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y}
Figura 6: Marker grafici rilevati dal 'Replicator' durante la masticazione sul lato destro 2 0.39 Indietro Lateralizzazione
3 2.18 Indietro Lateralizzazione
4 3.57 Indietro Lateralizzazione
5 5.68 Indietro Lateralizzazione
6 6.76 Indietro Inversione
7* 3.93 Indietro Medializzazione
8 1.15 Indietro Medializzazione

Osservando la figura e la tabella, si evidenziano le distanze e le direzioni dei punti marcati. In particolare, la distanza tra il punto   e il punto iniziale Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1L_m} è stata calcolata come circa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3.93 \,_\text{mm}} , con un angolo tra i vettori pari a  .  Calcolo dettagliato: 1. Definizione dei vettori: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{AB} = 7L_m - 1L_m = (255.7, -816.0) - (345.2, -844.5) = (-89.5, 28.5)} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{AC} = R_p - 1L_m = (346.6, -727.1) - (345.2, -844.5) = (1.4, 117.4)} 2. Magnitudine dei vettori:   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\vec{AC}| = \sqrt{(1.4)^2 + (117.4)^2} \approx 117.41} 3. Prodotto scalare:   4. Calcolo dell'angolo: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|} = \frac{2928.4}{93.93 \cdot 117.41} \approx 0.292} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta = \arccos(0.292) \approx 73.02^\circ}

Area Incisale

Questo paragrafo analizza i movimenti articolari dell’incisivo sul lato lavorante. Utilizzando le coordinate dei punti Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1_I} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7_I} e Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_p^+} in uno spazio 2D, sono calcolate le distanze lineari e l’angolo tra i segmenti che collegano questi punti.(Figura 7, tabella 3)

Tabella 3
Tracciato masticatorio Markers Distanza (mm) Direzione Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} Direzione dinamica  
Figura 7: Markers grafici rilevati dal 'Replicator' durante la masticazione nell'area incisale sul lato destro. 2 0.69 Retrusiva Lateralizzazione
3 2.30 Retrusiva Lateralizzazione
4 4.61 Retrusiva Lateralizzazione
5 7.58 Protrusiva Lateralizzazione
6 8.54 Retrusiva Inversione
7* 5.12 Retrusiva Medializzazione
8 1.75 Retrusiva Medializzazione

Per i tracciati dell’area incisale, la distanza tra i punti Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1_I} e   è di  , con un angolo calcolato approssimativamente pari a  .

Per approfondire i calcoli, ecco la spiegazione dettagliata  Calcolo dettagliato: Coordinate dei punti: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1_I = (631.5, -1151.8)} ,  , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_p^+ = (634.3, -912.8)} . Vettori: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{1I7I} = (-121.9, 11.9)} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{1IR_p^+} = (2.8, 239)} . Norme:  ,  . Prodotto scalare:  . Coseno dell’angolo: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(\theta) = \frac{\vec{1I7I} \cdot \vec{1IR_p^+}}{|\vec{1I7I}| \cdot |\vec{1IR_p^+}|} = \frac{2502.78}{122.49 \cdot 238.95} \approx 0.0855} . Angolo: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta = \arccos(0.0855) \approx 85.1^\circ} .

Molare mediotrusivo

L’analisi del moto cinematico mandibolare nel molare mediotrusivo evidenzia un progressivo aumento dell’angolo di direzione rispetto al molare laterotrusivo ( ) e all’incisivo (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 85^\circ} ), fino al massimo valore rilevato nel condilo (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 180^\circ} ). Questo angolo, noto come angolo di svincolo mediotrusivo, si forma tra la cuspide centrale e quella distale del primo molare. La Tabella 4 e la figura 8 mostrano le distanze tra i punti del tracciato e il punto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1M_m} .

Tabella 4
Tracciato mediotrusivo molare Markers Distanza (mm) Direzione Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} Direzione dinamica Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y}
Figura 8: Markers rilevati dal 'Replicator' durante la masticazione sul lato destro. 2 0.68 Retrusiva Medializzazione
3 2.19 Retrusiva Medializzazione
4 3.22 Retrusiva Medializzazione
5 5.79 Protrusiva Medializzazione
6 7.22 Protrusiva Inversione
7* 4.81 Retrusiva Lateralizzazione
8 1.18 Retrusiva Lateralizzazione

La distanza lineare tra il punto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1M_m} e   è stata calcolata come  , con un angolo approssimativo di  .  Calcolo dettagliato: Vettori:    . Norme:  ,  . Prodotto scalare:  . Coseno:  . Angolo:  .

Condilo Mediotrusivo

Il calcolo dell’angolo tra i segmenti   e   è fondamentale per analizzare i movimenti articolari nel sistema masticatorio. Questa analisi consente di comprendere come si muovono i segmenti articolari rispetto a un punto di riferimento. ( Figura 9, tabella 5)

Tabella 5
Tracciato masticatorio Markers Distanza (mm) Direzione   Direzione  
Figura 9: Markers rilevati dal 'Replicator' durante la masticazione sul lato destro nell'area incisale. 2 2.13 Protrusiva Medializzazione
3 6.19 Protrusiva Medializzazione
4 10.70 Protrusiva Medializzazione
5 11.09 Protrusiva Inversione
6 6.09 Protrusiva Lateralizzazione
7* 2.61 Protrusiva Lateralizzazione
8 0.50 Protrusiva Lateralizzazione

La distanza tra il punto   e   è risultata  , con un angolo calcolato di Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta = 166^\circ} . Sottraendo da Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 180^\circ} , si ottiene un angolo di Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 14^\circ} , noto come Angolo di Bennett. Per il calcolo dettagliato  Calcolo sintetico: Vettore: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{AB} = (-15.9, -60.4)} ,  . Prodotto scalare:  . Norme: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\vec{AB}| = 62.93} ,  . Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(\theta) = \frac{-3172.62}{62.93 \cdot 52.50} \approx -0.971} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta = \arccos(-0.971) \approx 166^\circ} .

Discussione sulla rototraslazione condilare

Il moto rototraslazionale dei condili è cruciale per comprendere la cinematica mandibolare. Se i condili ruotassero attorno a un punto fisso, i tracciati dei molari e degli incisivi sarebbero semplici archi di cerchio. Tuttavia, i movimenti reali includono sia rotazione che traslazione.[1][2]

Durante la laterotrusione, il condilo ipsilaterale combina rotazione attorno all’asse verticale e traslazione laterale, mentre il condilo mediotrusivo si muove principalmente in direzione mediale e anteriore, generando il "Tragitto orbitante".

Descrizione matematica

La rototraslazione del condilo laterotrusivo può essere rappresentata come:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_m = x_{m0} \cos(\theta) - y_{m0} \sin(\theta) + T_x }  

Dove:

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_{m0}, y_{m0})} : posizione iniziale del molare ipsilaterale.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_x} : traslazione laterale lungo l’asse Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} .
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_m, y_m)} : posizione finale.
 
Figura 10a: Rappresentazione di una conica.

Man mano che il condilo si muove, le coordinate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_m, y_m)} descrivono una traiettoria ellittica proiettata su un piano 2D. Questo avviene perché il centro di rotazione istantaneo del condilo non è fisso ma si sposta continuamente.

Un fenomeno simile si osserva per il condilo mediotrusivo e gli incisivi, le cui traiettorie sono influenzate da traslazioni mediali e anteriori e da rotazioni attorno all’asse verticale. Questi tracciati non sono ellissi perfette, ma curve più complesse a causa delle variazioni nei movimenti condilari.

I tracciati dentali sono correlati ai movimenti dei condili e offrono preziose informazioni sulla cinematica mandibolare, per cui sarebbe auspicabile spendere qualche parola in più sulla velocità del moto masticatorio e la rappresentazione di questa cinematica mandibolare in un forma geometrico/matematica chiamata 'Conica'.

Rappresentazione in una 'Conica'

Un modello basato su una conica passante per cinque punti strategici aiuta a rappresentare meglio queste traiettorie, come illustrato nella figura 10a.

In sintesi, i tracciati dei molari e degli incisivi assumono forme ellittiche complesse, poiché il centro di rotazione condilare si sposta continuamente. Questo modello aiuta a comprendere meglio la complessità dei movimenti mandibolari.

  1. T Ogawa 1, K Koyano, T Suetsugu Correlation between inclination of occlusal plane and masticatory movement.. J Dent. 1998 Mar;26(2):105-12. doi: 10.1016/s0300-5712(97)00001-8.
  2. W R Scott. Application of "cusp writer" findings to practical and theoretical occlusal problems. Part I.. I Prosthet Dent. 1976 Feb;35(2):211-21. PMID: 55483, DOI: 10.1016/0022-3913(76)90282-1