User contributions
9 November 2022
Store:QLMes04
Created page with "==2. Classical versus quantum probability== CP was mathematically formalized by Kolmogorov (1933)<ref name=":2" /> This is the calculus of probability measures, where a non-negative weight <math>p(A)</math> is assigned to any event <math>A</math>. The main property of CP is its additivity: if two events <math>O_1, O_2</math> are disjoint, then the probability of disjunction of these events equals to the sum of probabilities: {| width="80%" | |- | width="33%" | ..."
Store:QLMde04
Created page with "==2. Classical versus quantum probability== CP was mathematically formalized by Kolmogorov (1933)<ref name=":2" /> This is the calculus of probability measures, where a non-negative weight <math>p(A)</math> is assigned to any event <math>A</math>. The main property of CP is its additivity: if two events <math>O_1, O_2</math> are disjoint, then the probability of disjunction of these events equals to the sum of probabilities: {| width="80%" | |- | width="33%" | ..."
Store:QLMit04
Created page with "==2. Classical versus quantum probability== CP was mathematically formalized by Kolmogorov (1933)<ref name=":2" /> This is the calculus of probability measures, where a non-negative weight <math>p(A)</math> is assigned to any event <math>A</math>. The main property of CP is its additivity: if two events <math>O_1, O_2</math> are disjoint, then the probability of disjunction of these events equals to the sum of probabilities: {| width="80%" | |- | width="33%" | ..."
Store:QLMen04
Created page with "==2. Classical versus quantum probability== CP was mathematically formalized by Kolmogorov (1933)<ref name=":2" /> This is the calculus of probability measures, where a non-negative weight <math>p(A)</math> is assigned to any event <math>A</math>. The main property of CP is its additivity: if two events <math>O_1, O_2</math> are disjoint, then the probability of disjunction of these events equals to the sum of probabilities: {| width="80%" | |- | width="33%" | ..."
Store:QLMes03
Created page with "===Observations=== In textbooks on quantum mechanics, it is commonly pointed out that the main distinguishing feature of quantum theory is the presence of ''incompatible observables.'' We recall that two observables <math>A</math> <math>B</math> and are incompatible if it is impossible to assign values to them jointly. In the probabilistic model, this leads to impossibility to determine their joint probability distribution (JPD). The basic examples of incompatible obse..."
Store:QLMde03
Created page with "===Observations=== In textbooks on quantum mechanics, it is commonly pointed out that the main distinguishing feature of quantum theory is the presence of ''incompatible observables.'' We recall that two observables <math>A</math> <math>B</math> and are incompatible if it is impossible to assign values to them jointly. In the probabilistic model, this leads to impossibility to determine their joint probability distribution (JPD). The basic examples of incompatible obse..."
Store:QLMfr03
Created page with "===Observations=== In textbooks on quantum mechanics, it is commonly pointed out that the main distinguishing feature of quantum theory is the presence of ''incompatible observables.'' We recall that two observables <math>A</math> <math>B</math> and are incompatible if it is impossible to assign values to them jointly. In the probabilistic model, this leads to impossibility to determine their joint probability distribution (JPD). The basic examples of incompatible obse..."
Store:QLMit03
Created page with "===Observations=== In textbooks on quantum mechanics, it is commonly pointed out that the main distinguishing feature of quantum theory is the presence of ''incompatible observables.'' We recall that two observables <math>A</math> <math>B</math> and are incompatible if it is impossible to assign values to them jointly. In the probabilistic model, this leads to impossibility to determine their joint probability distribution (JPD). The basic examples of incompatible obse..."
Store:QLMen03
Created page with "===Observations=== In textbooks on quantum mechanics, it is commonly pointed out that the main distinguishing feature of quantum theory is the presence of ''incompatible observables.'' We recall that two observables <math>A</math> <math>B</math> and are incompatible if it is impossible to assign values to them jointly. In the probabilistic model, this leads to impossibility to determine their joint probability distribution (JPD). The basic examples of incompatible obse..."
Store:QLMit02
Created page with "== Introduction == The standard mathematical methods were originally developed to serve classical physics. The real analysis served as the mathematical basis of Newtonian mechanics (Newton, 1687)<ref>{{cita libro | autore = Newton Isaac | titolo = Philosophiae naturalis principia mathematica | url = https://archive.org/details/bub_gb_6EqxPav3vIsC | volume = | opera = | anno = 1687 | editore = Benjamin Motte | città = London UK | ISBN = | DOI = | PMID =..."
Store:QLMes02
Created page with "== Introduction == The standard mathematical methods were originally developed to serve classical physics. The real analysis served as the mathematical basis of Newtonian mechanics (Newton, 1687)<ref>{{cita libro | autore = Newton Isaac | titolo = Philosophiae naturalis principia mathematica | url = https://archive.org/details/bub_gb_6EqxPav3vIsC | volume = | opera = | anno = 1687 | editore = Benjamin Motte | città = London UK | ISBN = | DOI = | PMID =..."
Store:QLMde02
Created page with "== Introduction == The standard mathematical methods were originally developed to serve classical physics. The real analysis served as the mathematical basis of Newtonian mechanics (Newton, 1687)<ref>{{cita libro | autore = Newton Isaac | titolo = Philosophiae naturalis principia mathematica | url = https://archive.org/details/bub_gb_6EqxPav3vIsC | volume = | opera = | anno = 1687 | editore = Benjamin Motte | città = London UK | ISBN = | DOI = | PMID =..."
Store:QLMfr02
Created page with "== Introduction == The standard mathematical methods were originally developed to serve classical physics. The real analysis served as the mathematical basis of Newtonian mechanics (Newton, 1687)<ref>{{cita libro | autore = Newton Isaac | titolo = Philosophiae naturalis principia mathematica | url = https://archive.org/details/bub_gb_6EqxPav3vIsC | volume = | opera = | anno = 1687 | editore = Benjamin Motte | città = London UK | ISBN = | DOI = | PMID =..."
Store:QLMen02
Created page with "== Introduction == The standard mathematical methods were originally developed to serve classical physics. The real analysis served as the mathematical basis of Newtonian mechanics (Newton, 1687)<ref>{{cita libro | autore = Newton Isaac | titolo = Philosophiae naturalis principia mathematica | url = https://archive.org/details/bub_gb_6EqxPav3vIsC | volume = | opera = | anno = 1687 | editore = Benjamin Motte | città = London UK | ISBN = | DOI = | PMID =..."
Store:QLMes01
Created page with "== Abstract == We present the novel approach to mathematical modeling of information processes in biosystems. It explores the mathematical formalism and methodology of quantum theory, especially quantum measurement theory. This approach is known as ''quantum-like'' and it should be distinguished from study of genuine quantum physical processes in biosystems (quantum biophysics, quantum cognition). It is based on quantum information representation of biosystem’s state a..."
Store:QLMde01
Created page with "== Abstract == We present the novel approach to mathematical modeling of information processes in biosystems. It explores the mathematical formalism and methodology of quantum theory, especially quantum measurement theory. This approach is known as ''quantum-like'' and it should be distinguished from study of genuine quantum physical processes in biosystems (quantum biophysics, quantum cognition). It is based on quantum information representation of biosystem’s state a..."
Store:QLMfr01
Created page with "== Abstract == We present the novel approach to mathematical modeling of information processes in biosystems. It explores the mathematical formalism and methodology of quantum theory, especially quantum measurement theory. This approach is known as ''quantum-like'' and it should be distinguished from study of genuine quantum physical processes in biosystems (quantum biophysics, quantum cognition). It is based on quantum information representation of biosystem’s state a..."
Store:QLMit01
Created page with "== Abstract == We present the novel approach to mathematical modeling of information processes in biosystems. It explores the mathematical formalism and methodology of quantum theory, especially quantum measurement theory. This approach is known as ''quantum-like'' and it should be distinguished from study of genuine quantum physical processes in biosystems (quantum biophysics, quantum cognition). It is based on quantum information representation of biosystem’s state a..."
Store:QLMen01
Created page with "== Abstract == We present the novel approach to mathematical modeling of information processes in biosystems. It explores the mathematical formalism and methodology of quantum theory, especially quantum measurement theory. This approach is known as ''quantum-like'' and it should be distinguished from study of genuine quantum physical processes in biosystems (quantum biophysics, quantum cognition). It is based on quantum information representation of biosystem’s state a..."
5 November 2022
Store:EEMIes03
no edit summary
+24
Store:EEMIde03
no edit summary
+24
Store:EEMIfr03
no edit summary
+24
Store:EEMIit03
no edit summary
+24
Store:EEMIen03
no edit summary
+24
Explorando la electroencefalografía con un modelo inspirado en la mecánica cuántica
Replaced content with "{{transl|es}} {{FR | Title = Exploring electroencephalography with a model inspired by quantum mechanics | author1 = Nicholas J. M. Popiel | author2 = Colin Metrow | author3 = Geofrey Laforge | author4 = Adrian M. Owen | author5 = Bobby Stojanoski | author6 = Andrea Soddu | author7 = | author8 = | author9 = | author10 = | Source = https://pubmed.ncbi.nlm.nih.gov/34611185/<!-- where this work comes from or where was it was retrieved (URL) --> | Orig..."
−53,571
Erforschung der Elektroenzephalographie mit einem von der Quantenmechanik inspirierten Modell
Replaced content with "{{transl|de}} {{FR | Title = Exploring electroencephalography with a model inspired by quantum mechanics | author1 = Nicholas J. M. Popiel | author2 = Colin Metrow | author3 = Geofrey Laforge | author4 = Adrian M. Owen | author5 = Bobby Stojanoski | author6 = Andrea Soddu | author7 = | author8 = | author9 = | author10 = | Source = https://pubmed.ncbi.nlm.nih.gov/34611185/<!-- where this work comes from or where was it was retrieved (URL) --> | Orig..."
−53,571
Explorer l'électroencéphalographie avec un modèle inspiré de la mécanique quantique
Replaced content with "{{transl|fr}} {{FR | Title = Exploring electroencephalography with a model inspired by quantum mechanics | author1 = Nicholas J. M. Popiel | author2 = Colin Metrow | author3 = Geofrey Laforge | author4 = Adrian M. Owen | author5 = Bobby Stojanoski | author6 = Andrea Soddu | author7 = | author8 = | author9 = | author10 = | Source = https://pubmed.ncbi.nlm.nih.gov/34611185/<!-- where this work comes from or where was it was retrieved (URL) --> | Orig..."
−53,571
Esplorare l'elettroencefalografia con un modello ispirato alla meccanica quantistica
no edit summary
+3
Esplorare l'elettroencefalografia con un modello ispirato alla meccanica quantistica
Replaced content with "{{transl}} {{FR | Title = Exploring electroencephalography with a model inspired by quantum mechanics | author1 = Nicholas J. M. Popiel | author2 = Colin Metrow | author3 = Geofrey Laforge | author4 = Adrian M. Owen | author5 = Bobby Stojanoski | author6 = Andrea Soddu | author7 = | author8 = | author9 = | author10 = | Source = https://pubmed.ncbi.nlm.nih.gov/34611185/<!-- where this work comes from or where was it was retrieved (URL) --> | Origina..."
−53,574
Store:EEMIes12
Created page with "== Acknowledgements== We would like to thank Silvano Petrarca for his continued assistance in devising the model. This study was funded by the NSERC Discovery Grant (05578–2014RGPIN), CERC (215063), CIHR Foundation Fund (167264). AMO is a Fellow of the CIFAR Brain, Mind, and Consciousness Program. == Author contributions== N.J.M.P., C.M. and G.L. performed the analysis. A.S., B.S. and N.J.M.P. developed the model. A.S. and B.S. supervised the analysis. N.J.M.P., A.S...."
Store:EEMIde12
Created page with "== Acknowledgements== We would like to thank Silvano Petrarca for his continued assistance in devising the model. This study was funded by the NSERC Discovery Grant (05578–2014RGPIN), CERC (215063), CIHR Foundation Fund (167264). AMO is a Fellow of the CIFAR Brain, Mind, and Consciousness Program. == Author contributions== N.J.M.P., C.M. and G.L. performed the analysis. A.S., B.S. and N.J.M.P. developed the model. A.S. and B.S. supervised the analysis. N.J.M.P., A.S...."
Store:EEMIfr12
Created page with "== Acknowledgements== We would like to thank Silvano Petrarca for his continued assistance in devising the model. This study was funded by the NSERC Discovery Grant (05578–2014RGPIN), CERC (215063), CIHR Foundation Fund (167264). AMO is a Fellow of the CIFAR Brain, Mind, and Consciousness Program. == Author contributions== N.J.M.P., C.M. and G.L. performed the analysis. A.S., B.S. and N.J.M.P. developed the model. A.S. and B.S. supervised the analysis. N.J.M.P., A.S...."
Store:EEMIit12
Created page with "== Acknowledgements== We would like to thank Silvano Petrarca for his continued assistance in devising the model. This study was funded by the NSERC Discovery Grant (05578–2014RGPIN), CERC (215063), CIHR Foundation Fund (167264). AMO is a Fellow of the CIFAR Brain, Mind, and Consciousness Program. == Author contributions== N.J.M.P., C.M. and G.L. performed the analysis. A.S., B.S. and N.J.M.P. developed the model. A.S. and B.S. supervised the analysis. N.J.M.P., A.S...."
Store:EEMIen12
Created page with "== Acknowledgements== We would like to thank Silvano Petrarca for his continued assistance in devising the model. This study was funded by the NSERC Discovery Grant (05578–2014RGPIN), CERC (215063), CIHR Foundation Fund (167264). AMO is a Fellow of the CIFAR Brain, Mind, and Consciousness Program. == Author contributions== N.J.M.P., C.M. and G.L. performed the analysis. A.S., B.S. and N.J.M.P. developed the model. A.S. and B.S. supervised the analysis. N.J.M.P., A.S...."
Exploring electroencephalography with a model inspired by quantum mechanics
no edit summary
−17,889
Store:EEMIes11
Created page with "== Model == Each of the j electrodes is described by an ordered pair (<math>x_j,y_j,z_j</math>) in 3-dimensional space. To complete this analysis, the electrodes were first projected onto the (<math>x,y</math>) plane, removing the depth of the head. Figure 1A shows the locations of each electrode in this 2d-space. Following this projection, the time courses for each of the 92 electrodes were Hilbert transformed and then normalized following the procedure listed using Eq..."
Store:EEMIde11
Created page with "== Model == Each of the j electrodes is described by an ordered pair (<math>x_j,y_j,z_j</math>) in 3-dimensional space. To complete this analysis, the electrodes were first projected onto the (<math>x,y</math>) plane, removing the depth of the head. Figure 1A shows the locations of each electrode in this 2d-space. Following this projection, the time courses for each of the 92 electrodes were Hilbert transformed and then normalized following the procedure listed using Eq..."
Store:EEMIfr11
Created page with "== Model == Each of the j electrodes is described by an ordered pair (<math>x_j,y_j,z_j</math>) in 3-dimensional space. To complete this analysis, the electrodes were first projected onto the (<math>x,y</math>) plane, removing the depth of the head. Figure 1A shows the locations of each electrode in this 2d-space. Following this projection, the time courses for each of the 92 electrodes were Hilbert transformed and then normalized following the procedure listed using Eq..."
Store:EEMIit11
Created page with "== Model == Each of the j electrodes is described by an ordered pair (<math>x_j,y_j,z_j</math>) in 3-dimensional space. To complete this analysis, the electrodes were first projected onto the (<math>x,y</math>) plane, removing the depth of the head. Figure 1A shows the locations of each electrode in this 2d-space. Following this projection, the time courses for each of the 92 electrodes were Hilbert transformed and then normalized following the procedure listed using Eq..."
Store:EEMIen11
Created page with "== Model == Each of the j electrodes is described by an ordered pair (<math>x_j,y_j,z_j</math>) in 3-dimensional space. To complete this analysis, the electrodes were first projected onto the (<math>x,y</math>) plane, removing the depth of the head. Figure 1A shows the locations of each electrode in this 2d-space. Following this projection, the time courses for each of the 92 electrodes were Hilbert transformed and then normalized following the procedure listed using Eq..."
Store:EEMIes10
Created page with "== Methods== === Data acquisition=== Twenty-eight healthy subjects were recruited from The Brain and Mind Institute at the University of Western Ontario, Canada to participate in this study. Informed written consent was acquired prior to testing from all participants. Ethics approval for this study was granted by the Health Sciences Research Ethics Board and the Non-Medical Research Ethics Board of The University of Western Ontario and all research was performed in acco..."
Store:EEMIde10
Created page with "== Methods== === Data acquisition=== Twenty-eight healthy subjects were recruited from The Brain and Mind Institute at the University of Western Ontario, Canada to participate in this study. Informed written consent was acquired prior to testing from all participants. Ethics approval for this study was granted by the Health Sciences Research Ethics Board and the Non-Medical Research Ethics Board of The University of Western Ontario and all research was performed in acco..."
Store:EEMIfr10
Created page with "== Methods== === Data acquisition=== Twenty-eight healthy subjects were recruited from The Brain and Mind Institute at the University of Western Ontario, Canada to participate in this study. Informed written consent was acquired prior to testing from all participants. Ethics approval for this study was granted by the Health Sciences Research Ethics Board and the Non-Medical Research Ethics Board of The University of Western Ontario and all research was performed in acco..."
Store:EEMIit10
Created page with "== Methods== === Data acquisition=== Twenty-eight healthy subjects were recruited from The Brain and Mind Institute at the University of Western Ontario, Canada to participate in this study. Informed written consent was acquired prior to testing from all participants. Ethics approval for this study was granted by the Health Sciences Research Ethics Board and the Non-Medical Research Ethics Board of The University of Western Ontario and all research was performed in acco..."
Store:EEMIen10
Created page with "== Methods== === Data acquisition=== Twenty-eight healthy subjects were recruited from The Brain and Mind Institute at the University of Western Ontario, Canada to participate in this study. Informed written consent was acquired prior to testing from all participants. Ethics approval for this study was granted by the Health Sciences Research Ethics Board and the Non-Medical Research Ethics Board of The University of Western Ontario and all research was performed in acco..."
Store:EEMIes09
Created page with "==== Discussion ==== In the current study, we investigated the spatial-extent and the associated transitional properties of neural activity in the brain during active and resting conditions, and whether similar underlying network properties exist. We found that applying the Hilbert transformation to the EEG data and normalizing it (Eq. 2) imposes a probabilistic structure to the EEG signal across the brain (Eq. 3), which we used to identify probability of spatial patter..."
Store:EEMIde09
Created page with "==== Discussion ==== In the current study, we investigated the spatial-extent and the associated transitional properties of neural activity in the brain during active and resting conditions, and whether similar underlying network properties exist. We found that applying the Hilbert transformation to the EEG data and normalizing it (Eq. 2) imposes a probabilistic structure to the EEG signal across the brain (Eq. 3), which we used to identify probability of spatial patter..."
Store:EEMIfr09
Created page with "==== Discussion ==== In the current study, we investigated the spatial-extent and the associated transitional properties of neural activity in the brain during active and resting conditions, and whether similar underlying network properties exist. We found that applying the Hilbert transformation to the EEG data and normalizing it (Eq. 2) imposes a probabilistic structure to the EEG signal across the brain (Eq. 3), which we used to identify probability of spatial patter..."
Store:EEMIit09
Created page with "==== Discussion ==== In the current study, we investigated the spatial-extent and the associated transitional properties of neural activity in the brain during active and resting conditions, and whether similar underlying network properties exist. We found that applying the Hilbert transformation to the EEG data and normalizing it (Eq. 2) imposes a probabilistic structure to the EEG signal across the brain (Eq. 3), which we used to identify probability of spatial patter..."
Store:EEMIen09
Created page with "==== Discussion ==== In the current study, we investigated the spatial-extent and the associated transitional properties of neural activity in the brain during active and resting conditions, and whether similar underlying network properties exist. We found that applying the Hilbert transformation to the EEG data and normalizing it (Eq. 2) imposes a probabilistic structure to the EEG signal across the brain (Eq. 3), which we used to identify probability of spatial patter..."