User contributions
10 November 2022
Store:QLMde14
Created page with "===8.2. Biological functions in the quantum Markov framework=== We turn to the open system dynamics with the GKSL-equation. In our modeling, Hamiltonian <math>\widehat{\mathcal{H}}</math> and Lindbladian <math>\widehat{{L}}</math> represent some special ''biological function'' <math>F</math> (see Khrennikov et al., 2018) for details. Its functioning results from interaction of internal and external information flows. In Sections 10, 11.3, <math>F</math> is some ''..."
Store:QLMfr14
Created page with "===8.2. Biological functions in the quantum Markov framework=== We turn to the open system dynamics with the GKSL-equation. In our modeling, Hamiltonian <math>\widehat{\mathcal{H}}</math> and Lindbladian <math>\widehat{{L}}</math> represent some special ''biological function'' <math>F</math> (see Khrennikov et al., 2018) for details. Its functioning results from interaction of internal and external information flows. In Sections 10, 11.3, <math>F</math> is some ''..."
Store:QLMit14
Created page with "===8.2. Biological functions in the quantum Markov framework=== We turn to the open system dynamics with the GKSL-equation. In our modeling, Hamiltonian <math>\widehat{\mathcal{H}}</math> and Lindbladian <math>\widehat{{L}}</math> represent some special ''biological function'' <math>F</math> (see Khrennikov et al., 2018) for details. Its functioning results from interaction of internal and external information flows. In Sections 10, 11.3, <math>F</math> is some ''..."
Store:QLMen14
Created page with "===8.2. Biological functions in the quantum Markov framework=== We turn to the open system dynamics with the GKSL-equation. In our modeling, Hamiltonian <math>\widehat{\mathcal{H}}</math> and Lindbladian <math>\widehat{{L}}</math> represent some special ''biological function'' <math>F</math> (see Khrennikov et al., 2018) for details. Its functioning results from interaction of internal and external information flows. In Sections 10, 11.3, <math>F</math> is some ''..."
Store:QLMfr13
Created page with "==8. Open quantum systems: interaction of a biosystem with its environment== As was already emphasized, any biosystem <math>S</math> is fundamentally open. Hence, dynamics of its state has to be modeled via an interaction with surrounding environment <math> \varepsilon</math>. The states of <math>S</math> and <math> \varepsilon</math> are represented in the Hilbert spaces <math>\mathcal{H}</math> and <math>\mathcal{H}</math>. The compound system <math>S+\varepsilon</..."
Store:QLMde13
Created page with "==8. Open quantum systems: interaction of a biosystem with its environment== As was already emphasized, any biosystem <math>S</math> is fundamentally open. Hence, dynamics of its state has to be modeled via an interaction with surrounding environment <math> \varepsilon</math>. The states of <math>S</math> and <math> \varepsilon</math> are represented in the Hilbert spaces <math>\mathcal{H}</math> and <math>\mathcal{H}</math>. The compound system <math>S+\varepsilon</..."
Store:QLMit13
Created page with "==8. Open quantum systems: interaction of a biosystem with its environment== As was already emphasized, any biosystem <math>S</math> is fundamentally open. Hence, dynamics of its state has to be modeled via an interaction with surrounding environment <math> \varepsilon</math>. The states of <math>S</math> and <math> \varepsilon</math> are represented in the Hilbert spaces <math>\mathcal{H}</math> and <math>\mathcal{H}</math>. The compound system <math>S+\varepsilon</..."
Store:QLMen13
Created page with "==8. Open quantum systems: interaction of a biosystem with its environment== As was already emphasized, any biosystem <math>S</math> is fundamentally open. Hence, dynamics of its state has to be modeled via an interaction with surrounding environment <math> \varepsilon</math>. The states of <math>S</math> and <math> \varepsilon</math> are represented in the Hilbert spaces <math>\mathcal{H}</math> and <math>\mathcal{H}</math>. The compound system <math>S+\varepsilon</..."
Store:QLMes13
Created page with "==8. Open quantum systems: interaction of a biosystem with its environment== As was already emphasized, any biosystem <math>S</math> is fundamentally open. Hence, dynamics of its state has to be modeled via an interaction with surrounding environment <math> \varepsilon</math>. The states of <math>S</math> and <math> \varepsilon</math> are represented in the Hilbert spaces <math>\mathcal{H}</math> and <math>\mathcal{H}</math>. The compound system <math>S+\varepsilon</..."
Store:QLMes12
Created page with "===6.4. Mental realism=== Since very beginning of quantum mechanics, noncommutativity of operators <math>\widehat{A},\widehat{B} </math> representing observables <math>A,B </math> was considered as the mathematical representation of their incompatibility. In philosophic terms, this situation is treated as impossibility of the realistic description. In cognitive science, this means that there exist mental states such that an individual cannot assign the definite values..."
Store:QLMde12
Created page with "===6.4. Mental realism=== Since very beginning of quantum mechanics, noncommutativity of operators <math>\widehat{A},\widehat{B} </math> representing observables <math>A,B </math> was considered as the mathematical representation of their incompatibility. In philosophic terms, this situation is treated as impossibility of the realistic description. In cognitive science, this means that there exist mental states such that an individual cannot assign the definite values..."
Store:QLMfr12
Created page with "===6.4. Mental realism=== Since very beginning of quantum mechanics, noncommutativity of operators <math>\widehat{A},\widehat{B} </math> representing observables <math>A,B </math> was considered as the mathematical representation of their incompatibility. In philosophic terms, this situation is treated as impossibility of the realistic description. In cognitive science, this means that there exist mental states such that an individual cannot assign the definite values..."
Store:QLMit12
Created page with "===6.4. Mental realism=== Since very beginning of quantum mechanics, noncommutativity of operators <math>\widehat{A},\widehat{B} </math> representing observables <math>A,B </math> was considered as the mathematical representation of their incompatibility. In philosophic terms, this situation is treated as impossibility of the realistic description. In cognitive science, this means that there exist mental states such that an individual cannot assign the definite values..."
Store:QLMen12
Created page with "===6.4. Mental realism=== Since very beginning of quantum mechanics, noncommutativity of operators <math>\widehat{A},\widehat{B} </math> representing observables <math>A,B </math> was considered as the mathematical representation of their incompatibility. In philosophic terms, this situation is treated as impossibility of the realistic description. In cognitive science, this means that there exist mental states such that an individual cannot assign the definite values..."
Store:QLMes11
Created page with "===6.2. Response replicability effect for sequential questioning=== The approach based on identification of the order effect with noncommutative representation of questions (Wang and Busemeyer, 2013) was criticized in paper (Khrennikov et al., 2014). To discuss this paper, we recall the notion of ''response replicability.'' Suppose that a person, say John, is asked some question <math>A</math> and suppose that he replies, e.g, “yes”. If immediately after this, he is..."
Store:QLMde11
Created page with "===6.2. Response replicability effect for sequential questioning=== The approach based on identification of the order effect with noncommutative representation of questions (Wang and Busemeyer, 2013) was criticized in paper (Khrennikov et al., 2014). To discuss this paper, we recall the notion of ''response replicability.'' Suppose that a person, say John, is asked some question <math>A</math> and suppose that he replies, e.g, “yes”. If immediately after this, he is..."
Store:QLMfr11
Created page with "===6.2. Response replicability effect for sequential questioning=== The approach based on identification of the order effect with noncommutative representation of questions (Wang and Busemeyer, 2013) was criticized in paper (Khrennikov et al., 2014). To discuss this paper, we recall the notion of ''response replicability.'' Suppose that a person, say John, is asked some question <math>A</math> and suppose that he replies, e.g, “yes”. If immediately after this, he is..."
Store:QLMit11
Created page with "===6.2. Response replicability effect for sequential questioning=== The approach based on identification of the order effect with noncommutative representation of questions (Wang and Busemeyer, 2013) was criticized in paper (Khrennikov et al., 2014). To discuss this paper, we recall the notion of ''response replicability.'' Suppose that a person, say John, is asked some question <math>A</math> and suppose that he replies, e.g, “yes”. If immediately after this, he is..."
Store:QLMen11
Created page with "===6.2. Response replicability effect for sequential questioning=== The approach based on identification of the order effect with noncommutative representation of questions (Wang and Busemeyer, 2013) was criticized in paper (Khrennikov et al., 2014). To discuss this paper, we recall the notion of ''response replicability.'' Suppose that a person, say John, is asked some question <math>A</math> and suppose that he replies, e.g, “yes”. If immediately after this, he is..."
Quantum-like modeling in biology with open quantum systems and instruments - en
no edit summary
−15,920
Store:QLMes10
Created page with "==5. Modeling of the process of sensation–perception within indirect measurement scheme== Foundations of theory of ''unconscious inference'' for the formation of visual impressions were set in 19th century by H. von Helmholtz. Although von Helmholtz studied mainly visual sensation–perception, he also applied his theory for other senses up to culmination in theory of social unconscious inference. By von Helmholtz here are two stages of the cognitive process, and they..."
Store:QLMde10
Created page with "==5. Modeling of the process of sensation–perception within indirect measurement scheme== Foundations of theory of ''unconscious inference'' for the formation of visual impressions were set in 19th century by H. von Helmholtz. Although von Helmholtz studied mainly visual sensation–perception, he also applied his theory for other senses up to culmination in theory of social unconscious inference. By von Helmholtz here are two stages of the cognitive process, and they..."
Store:QLMfr10
Created page with "==5. Modeling of the process of sensation–perception within indirect measurement scheme== Foundations of theory of ''unconscious inference'' for the formation of visual impressions were set in 19th century by H. von Helmholtz. Although von Helmholtz studied mainly visual sensation–perception, he also applied his theory for other senses up to culmination in theory of social unconscious inference. By von Helmholtz here are two stages of the cognitive process, and they..."
Store:QLMit10
Created page with "==5. Modeling of the process of sensation–perception within indirect measurement scheme== Foundations of theory of ''unconscious inference'' for the formation of visual impressions were set in 19th century by H. von Helmholtz. Although von Helmholtz studied mainly visual sensation–perception, he also applied his theory for other senses up to culmination in theory of social unconscious inference. By von Helmholtz here are two stages of the cognitive process, and they..."
Store:QLMen10
Created page with "==5. Modeling of the process of sensation–perception within indirect measurement scheme== Foundations of theory of ''unconscious inference'' for the formation of visual impressions were set in 19th century by H. von Helmholtz. Although von Helmholtz studied mainly visual sensation–perception, he also applied his theory for other senses up to culmination in theory of social unconscious inference. By von Helmholtz here are two stages of the cognitive process, and they..."
Store:QLMes09
Created page with "==4. Quantum instruments from the scheme of indirect measurements== The basic model for construction of quantum instruments is based on the scheme of indirect measurements. This scheme formalizes the following situation: measurement’s outputs are generated via interaction of a system <math>S</math> with a measurement apparatus <math>M</math> . This apparatus consists of a complex physical device interacting with <math>S</math> and a pointer that shows the result of me..."
Store:QLMde09
Created page with "==4. Quantum instruments from the scheme of indirect measurements== The basic model for construction of quantum instruments is based on the scheme of indirect measurements. This scheme formalizes the following situation: measurement’s outputs are generated via interaction of a system <math>S</math> with a measurement apparatus <math>M</math> . This apparatus consists of a complex physical device interacting with <math>S</math> and a pointer that shows the result of me..."
Store:QLMit09
Created page with "==4. Quantum instruments from the scheme of indirect measurements== The basic model for construction of quantum instruments is based on the scheme of indirect measurements. This scheme formalizes the following situation: measurement’s outputs are generated via interaction of a system <math>S</math> with a measurement apparatus <math>M</math> . This apparatus consists of a complex physical device interacting with <math>S</math> and a pointer that shows the result of me..."
Store:QLMes08
Created page with "===3.4. General theory (Davies–Lewis–Ozawa)=== Finally, we formulate the general notion of quantum instrument. A superoperator acting in <math display="inline">\mathcal{L}(\mathcal{H})</math> is called positive if it maps the set of positive semi-definite operators into itself. We remark that, for each '''<u><math>x,\Im_A(x)</math></u>''' given by (13) can be considered as linear positive map. Generally any map<math>x\rightarrow\Im_A(x)</math> , where for each <m..."
Store:QLMde08
Created page with "===3.4. General theory (Davies–Lewis–Ozawa)=== Finally, we formulate the general notion of quantum instrument. A superoperator acting in <math display="inline">\mathcal{L}(\mathcal{H})</math> is called positive if it maps the set of positive semi-definite operators into itself. We remark that, for each '''<u><math>x,\Im_A(x)</math></u>''' given by (13) can be considered as linear positive map. Generally any map<math>x\rightarrow\Im_A(x)</math> , where for each <m..."
Store:QLMfr08
Created page with "===3.4. General theory (Davies–Lewis–Ozawa)=== Finally, we formulate the general notion of quantum instrument. A superoperator acting in <math display="inline">\mathcal{L}(\mathcal{H})</math> is called positive if it maps the set of positive semi-definite operators into itself. We remark that, for each '''<u><math>x,\Im_A(x)</math></u>''' given by (13) can be considered as linear positive map. Generally any map<math>x\rightarrow\Im_A(x)</math> , where for each <m..."
Store:QLMit08
Created page with "===3.4. General theory (Davies–Lewis–Ozawa)=== Finally, we formulate the general notion of quantum instrument. A superoperator acting in <math display="inline">\mathcal{L}(\mathcal{H})</math> is called positive if it maps the set of positive semi-definite operators into itself. We remark that, for each '''<u><math>x,\Im_A(x)</math></u>''' given by (13) can be considered as linear positive map. Generally any map<math>x\rightarrow\Im_A(x)</math> , where for each <m..."
Store:QLMen09
Created page with "==4. Quantum instruments from the scheme of indirect measurements== The basic model for construction of quantum instruments is based on the scheme of indirect measurements. This scheme formalizes the following situation: measurement’s outputs are generated via interaction of a system <math>S</math> with a measurement apparatus <math>M</math> . This apparatus consists of a complex physical device interacting with <math>S</math> and a pointer that shows the result of me..."
Store:QLMen08
Created page with "===3.4. General theory (Davies–Lewis–Ozawa)=== Finally, we formulate the general notion of quantum instrument. A superoperator acting in <math display="inline">\mathcal{L}(\mathcal{H})</math> is called positive if it maps the set of positive semi-definite operators into itself. We remark that, for each '''<u><math>x,\Im_A(x)</math></u>''' given by (13) can be considered as linear positive map. Generally any map<math>x\rightarrow\Im_A(x)</math> , where for each <m..."
Store:QLMes07
Created page with "===3.3. Non-projective state update: atomic instruments=== In general, the statistical properties of any measurement are characterized by # the output probability distribution <math display="inline">Pr\{\text{x}=x\parallel\rho\}</math>, the probability distribution of the output <math display="inline">x</math> of the measurement in the input state <math display="inline">\rho </math>; # the quantum state reduction <math display="inline">\rho\rightarrow\rho_{(X=x)} </ma..."
Store:QLMde07
Created page with "===3.3. Non-projective state update: atomic instruments=== In general, the statistical properties of any measurement are characterized by # the output probability distribution <math display="inline">Pr\{\text{x}=x\parallel\rho\}</math>, the probability distribution of the output <math display="inline">x</math> of the measurement in the input state <math display="inline">\rho </math>; # the quantum state reduction <math display="inline">\rho\rightarrow\rho_{(X=x)} </ma..."
Store:QLMfr07
Created page with "===3.3. Non-projective state update: atomic instruments=== In general, the statistical properties of any measurement are characterized by # the output probability distribution <math display="inline">Pr\{\text{x}=x\parallel\rho\}</math>, the probability distribution of the output <math display="inline">x</math> of the measurement in the input state <math display="inline">\rho </math>; # the quantum state reduction <math display="inline">\rho\rightarrow\rho_{(X=x)} </ma..."
Store:QLMit07
Created page with "===3.3. Non-projective state update: atomic instruments=== In general, the statistical properties of any measurement are characterized by # the output probability distribution <math display="inline">Pr\{\text{x}=x\parallel\rho\}</math>, the probability distribution of the output <math display="inline">x</math> of the measurement in the input state <math display="inline">\rho </math>; # the quantum state reduction <math display="inline">\rho\rightarrow\rho_{(X=x)} </ma..."
Store:QLMen07
Created page with "===3.3. Non-projective state update: atomic instruments=== In general, the statistical properties of any measurement are characterized by # the output probability distribution <math display="inline">Pr\{\text{x}=x\parallel\rho\}</math>, the probability distribution of the output <math display="inline">x</math> of the measurement in the input state <math display="inline">\rho </math>; # the quantum state reduction <math display="inline">\rho\rightarrow\rho_{(X=x)} </ma..."
9 November 2022
Quantum-like modeling in biology with open quantum systems and instruments - en
no edit summary
−24,999
Store:QLMes06
Created page with "===3.2. Von Neumann formalism for quantum observables=== In the original quantum formalism (Von Neumann, 1955), physical observable <math>A</math> is represented by a Hermitian operator <math>\hat{A}</math> . We consider only operators with discrete spectra:<math>\hat{A}=\sum_x x\hat{E}^A(x)</math> where <math>\hat{E}^A(x)</math> is the projector onto the subspace of <math display="inline">\mathcal{H}</math> corresponding to the eigenvalue <math display="inline">x</..."
Store:QLMde06
Created page with "===3.2. Von Neumann formalism for quantum observables=== In the original quantum formalism (Von Neumann, 1955), physical observable <math>A</math> is represented by a Hermitian operator <math>\hat{A}</math> . We consider only operators with discrete spectra:<math>\hat{A}=\sum_x x\hat{E}^A(x)</math> where <math>\hat{E}^A(x)</math> is the projector onto the subspace of <math display="inline">\mathcal{H}</math> corresponding to the eigenvalue <math display="inline">x</..."
Store:QLMfr06
Created page with "===3.2. Von Neumann formalism for quantum observables=== In the original quantum formalism (Von Neumann, 1955), physical observable <math>A</math> is represented by a Hermitian operator <math>\hat{A}</math> . We consider only operators with discrete spectra:<math>\hat{A}=\sum_x x\hat{E}^A(x)</math> where <math>\hat{E}^A(x)</math> is the projector onto the subspace of <math display="inline">\mathcal{H}</math> corresponding to the eigenvalue <math display="inline">x</..."
Store:QLMit06
Created page with "===3.2. Von Neumann formalism for quantum observables=== In the original quantum formalism (Von Neumann, 1955), physical observable <math>A</math> is represented by a Hermitian operator <math>\hat{A}</math> . We consider only operators with discrete spectra:<math>\hat{A}=\sum_x x\hat{E}^A(x)</math> where <math>\hat{E}^A(x)</math> is the projector onto the subspace of <math display="inline">\mathcal{H}</math> corresponding to the eigenvalue <math display="inline">x</..."
Store:QLMen06
Created page with "===3.2. Von Neumann formalism for quantum observables=== In the original quantum formalism (Von Neumann, 1955), physical observable <math>A</math> is represented by a Hermitian operator <math>\hat{A}</math> . We consider only operators with discrete spectra:<math>\hat{A}=\sum_x x\hat{E}^A(x)</math> where <math>\hat{E}^A(x)</math> is the projector onto the subspace of <math display="inline">\mathcal{H}</math> corresponding to the eigenvalue <math display="inline">x</..."
Store:QLMes05
Created page with "==3. Quantum instruments== ===3.1. A few words about the quantum formalism=== Denote by <math display="inline">\mathcal{H}</math> a complex Hilbert space. For simplicity, we assume that it is finite dimensional. Pure states of a system <math>S</math> are given by normalized vectors of <math display="inline">\mathcal{H}</math> and mixed states by density operators (positive semi-definite operators with unit trace). The space of density operators is denoted by <math>S..."
Store:QLMfr05
Created page with "==3. Quantum instruments== ===3.1. A few words about the quantum formalism=== Denote by <math display="inline">\mathcal{H}</math> a complex Hilbert space. For simplicity, we assume that it is finite dimensional. Pure states of a system <math>S</math> are given by normalized vectors of <math display="inline">\mathcal{H}</math> and mixed states by density operators (positive semi-definite operators with unit trace). The space of density operators is denoted by <math>S..."
Store:QLMde05
Created page with "==3. Quantum instruments== ===3.1. A few words about the quantum formalism=== Denote by <math display="inline">\mathcal{H}</math> a complex Hilbert space. For simplicity, we assume that it is finite dimensional. Pure states of a system <math>S</math> are given by normalized vectors of <math display="inline">\mathcal{H}</math> and mixed states by density operators (positive semi-definite operators with unit trace). The space of density operators is denoted by <math>S..."
Store:QLMit05
Created page with "==3. Quantum instruments== ===3.1. A few words about the quantum formalism=== Denote by <math display="inline">\mathcal{H}</math> a complex Hilbert space. For simplicity, we assume that it is finite dimensional. Pure states of a system <math>S</math> are given by normalized vectors of <math display="inline">\mathcal{H}</math> and mixed states by density operators (positive semi-definite operators with unit trace). The space of density operators is denoted by <math>S..."
Store:QLMen05
Created page with "==3. Quantum instruments== ===3.1. A few words about the quantum formalism=== Denote by <math display="inline">\mathcal{H}</math> a complex Hilbert space. For simplicity, we assume that it is finite dimensional. Pure states of a system <math>S</math> are given by normalized vectors of <math display="inline">\mathcal{H}</math> and mixed states by density operators (positive semi-definite operators with unit trace). The space of density operators is denoted by <math>S..."