Difference between revisions of "Dynamique physiologique dans les maladies démyélinisantes : démêler les relations complexes grâce à la modélisation informatique"

no edit summary
Tags: Mobile web edit Mobile edit Visual edit
Tags: Mobile web edit Mobile edit Visual edit
Line 179: Line 179:
De plus, ces modèles simplifiés ont permis l'application d'outils mathématiques pour examiner les mécanismes non linéaires par lesquels la DA est initiée et terminée..<ref name=":9" /><ref name=":10" /><ref name=":11" /> L'analyse de la bifurcation a révélé la bistabilité sous-jacente de l'excitabilité des axones dans des conditions pathologiques, ainsi que les facteurs contrôlant la transition d'un état d'attracteur à un autre. La MA, par exemple, nécessite un courant entrant lent qui permet deux états d'attracteur stables, l'un correspondant à la quiescence et l'autre à des pointes répétitives (un cycle limite). La fin de la MA a été expliquée par la destruction de l'attracteur associé aux pics répétitifs. Cela s'est produit lorsque la rétroaction négative ultra-lente sous la forme d'une accumulation intracellulaire de Na + a provoqué la destruction de l'état de l'attracteur à cycle limite [58]. D'autres études utilisant l'analyse de bifurcation suggèrent que les changements de concentration d'ions peuvent introduire une dynamique lente qui peut être importante pour comprendre les résultats pathologiques [94, 109].<ref name=":19" /><ref>Yu N., Morris C.E., Joós B., Longtin A. Spontaneous excitation patterns computed for axons with injury-like impairments of sodium channels and Na/K pumps. PLoS Comput. Biol. 2012;8:e1002664. doi: 10.1371/journal.pcbi.1002664. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref>
De plus, ces modèles simplifiés ont permis l'application d'outils mathématiques pour examiner les mécanismes non linéaires par lesquels la DA est initiée et terminée..<ref name=":9" /><ref name=":10" /><ref name=":11" /> L'analyse de la bifurcation a révélé la bistabilité sous-jacente de l'excitabilité des axones dans des conditions pathologiques, ainsi que les facteurs contrôlant la transition d'un état d'attracteur à un autre. La MA, par exemple, nécessite un courant entrant lent qui permet deux états d'attracteur stables, l'un correspondant à la quiescence et l'autre à des pointes répétitives (un cycle limite). La fin de la MA a été expliquée par la destruction de l'attracteur associé aux pics répétitifs. Cela s'est produit lorsque la rétroaction négative ultra-lente sous la forme d'une accumulation intracellulaire de Na + a provoqué la destruction de l'état de l'attracteur à cycle limite [58]. D'autres études utilisant l'analyse de bifurcation suggèrent que les changements de concentration d'ions peuvent introduire une dynamique lente qui peut être importante pour comprendre les résultats pathologiques [94, 109].<ref name=":19" /><ref>Yu N., Morris C.E., Joós B., Longtin A. Spontaneous excitation patterns computed for axons with injury-like impairments of sodium channels and Na/K pumps. PLoS Comput. Biol. 2012;8:e1002664. doi: 10.1371/journal.pcbi.1002664. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref>


==== Modeling at Small Scales ====
==== Modélisation à petite échelle ====
Studies mentioned above highlight the importance of ion concentration changes but each of them only considered those changes at a relatively course scale. By comparison, the study by Lorpreore et al.<ref>Lopreore C.L., Bartol T.M., Coggan J.S., Keller D.X., Sosinsky G.E., Ellisman M.H., Sejnowski T.J. Computational modeling of three-dimensional electrodiffusion in biological systems: Application to the node of Ranvier. Biophys. J. 2008;95:2624–2635. doi: 10.1529/biophysj.108.132167.</ref> tackled the daunting problem of modeling three-dimensional electro-diffusion of ion fluxes in micro and nano-domains surrounding ion channels at the node of Ranvier. In this unique model, the fluxes of ions are calculated by Poisson-Nernst-Planck equations with finite volume techniques. The fluxes and electric potentials were evaluated within voxels formed by a Delaunay-Voronoi mesh of the axon interior and exterior close to the membrane. Importantly, the algorithm was validated and results agreed with cable model predictions. Divergence from cable model predictions at smaller cluster sizes revealed the importance of each channel’s own electric field.
Les études mentionnées ci-dessus mettent en évidence l'importance des changements de concentration d'ions, mais chacune d'entre elles n'a considéré ces changements qu'à une échelle relativement importante. Par comparaison, l'étude de Lorpreore et al.<ref>Lopreore C.L., Bartol T.M., Coggan J.S., Keller D.X., Sosinsky G.E., Ellisman M.H., Sejnowski T.J. Computational modeling of three-dimensional electrodiffusion in biological systems: Application to the node of Ranvier. Biophys. J. 2008;95:2624–2635. doi: 10.1529/biophysj.108.132167.</ref> ont abordé le redoutable problème de la modélisation de l'électrodiffusion tridimensionnelle des flux ioniques dans les micro et nano-domaines entourant les canaux ioniques au nœud de Ranvier. Dans ce modèle unique, les flux d'ions sont calculés par les équations de Poisson-Nernst-Planck avec des techniques de volumes finis. Les flux et potentiels électriques ont été évalués au sein de voxels formés par un maillage de Delaunay-Voronoi de l'intérieur et de l'extérieur des axones proches de la membrane. Il est important de noter que l'algorithme a été validé et que les résultats ont été en accord avec les prédictions du modèle de câble. La divergence par rapport aux prédictions du modèle de câble à des tailles de cluster plus petites a révélé l'importance du champ électrique propre à chaque canal.


The above example highlights the point that models can simulate more than ion channels and membrane potential. Indeed, models can and must dig deeper into biophysical mechanisms like electro-diffusion and into signaling pathways that ultimately serve to regulate ion channel function and expression. A promising method called Biochemical Systems Theory (BST) may be useful in the future for pre-screening the effects of drugs at the systemic level. Broome and Coleman<ref>Broome T.M., Cole.man R.A. A mathematical model of cell death in multiple sclerosis. J. Neurosci. Methods. 2011;201:420–425. doi: 10.1016/j.jneumeth.2011.08.008. [PubMed] [CrossRef] [Google Scholar]</ref> demonstrated the power of this technique by modeling several biochemical pathways in neurons associated with cell death during MS including reactive oxygen and nitrogen species formation, Ca2+ dynamics, death complex formation, apoptotic factor release, and inflammatory responses together with three different states: normal, MS disease and treatment. At the atomic-level, a computational model of myelin basic protein (MBP) structure was carried-out because post-translational modifications of MBP may contribute to demyelination in MS.<ref>Ridsdale R.A., Beniac D.R., Tompkins T.A., Moscarello M.A., Harauz G. Three-dimensional structure of myelin basic protein. II. Molecular modeling and considerations of predicted structures in multiple sclerosis. J. Biol. Chem. 1997;272:4269–4275. doi: 10.1074/jbc.272.7.4269. [PubMed] [CrossRef] [Google Scholar]</ref> It is important to understand its 3D structure to predict interaction sites with other molecules but a crystal structure for this protein might never be measured directly. This type of modeling may, therefore, represent an effective way to predict the structure by combining knowledge of amino acid sequence with information from similar proteins. The challenge for and the true power of modeling lies in connecting mechanisms that operate at vastly different scales, from molecular structure to the nervous system as a whole, and beyond, to address how the nervous system interacts with the immune system.
L'exemple ci-dessus met en évidence le fait que les modèles peuvent simuler plus que les canaux ioniques et le potentiel de membrane. En effet, les modèles peuvent et doivent approfondir les mécanismes biophysiques tels que l'électrodiffusion et les voies de signalisation qui servent finalement à réguler la fonction et l'expression des canaux ioniques. Une méthode prometteuse appelée théorie des systèmes biochimiques (BST) pourrait être utile à l'avenir pour présélectionner les effets des médicaments au niveau systémique. Broome et Coleman<ref>Broome T.M., Cole.man R.A. A mathematical model of cell death in multiple sclerosis. J. Neurosci. Methods. 2011;201:420–425. doi: 10.1016/j.jneumeth.2011.08.008. [PubMed] [CrossRef] [Google Scholar]</ref> ont démontré la puissance de cette technique en modélisant plusieurs voies biochimiques dans les neurones associées à la mort cellulaire au cours de la SEP, notamment la formation d'espèces réactives de l'oxygène et de l'azote, la dynamique du Ca2+, la formation du complexe de mort, la libération du facteur apoptotique et les réponses inflammatoires avec trois états différents : normal, SEP maladie et traitement. Au niveau atomique, un modèle informatique de la structure de la protéine basique de la myéline (MBP) a été réalisé car les modifications post-traductionnelles de la MBP peuvent contribuer à la démyélinisation dans la SEP..<ref>Ridsdale R.A., Beniac D.R., Tompkins T.A., Moscarello M.A., Harauz G. Three-dimensional structure of myelin basic protein. II. Molecular modeling and considerations of predicted structures in multiple sclerosis. J. Biol. Chem. 1997;272:4269–4275. doi: 10.1074/jbc.272.7.4269. [PubMed] [CrossRef] [Google Scholar]</ref> Il est important de comprendre sa structure 3D pour prédire les sites d'interaction avec d'autres molécules, mais la structure cristalline de cette protéine pourrait ne jamais être mesurée directement. Ce type de modélisation peut donc représenter un moyen efficace de prédire la structure en combinant la connaissance de la séquence d'acides aminés avec des informations provenant de protéines similaires. Le défi et le véritable pouvoir de la modélisation résident dans la connexion de mécanismes qui fonctionnent à des échelles très différentes, de la structure moléculaire au système nerveux dans son ensemble, et au-delà, pour déterminer comment le système nerveux interagit avec le système immunitaire.


Models of Immune Factors. While there are numerous computational models of the immune system,<ref>Pigozzo A.B., Macedo G.C., Santos R.W., Lobosco M. On the computational modeling of the innate immune system. BMC Bioinform. 2013;14 doi: 10.1186/1471-2105-14-S6-S7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> those related to MS typically model genetic interaction networks, either represented as sets of ordinary differential equations (ODEs) or Boolean networks. One systems biology model of a possible cellular mechanism of RRMS found breakdown in homeostasis of effector (Teff) and regulatory T (Treg) cells.<ref>Doerck S., Göbel K., Weise G., Schneider-Hohendorf T., Reinhardt M., Hauff P., Schwab N., Linker R., Mäurer M., Meuth S.G., et al. Temporal pattern of ICAM-I mediated regulatory T cell recruitment to sites of inflammation in adoptive transfer model of multiple sclerosis. PLoS ONE. 2010;5:e15478. doi: 10.1371/journal.pone.0015478. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref><ref>De Mendizábal N.V., Carneiro J., Solé R.V., Goñi J., Bragard J., Martinez-Forero I., Martinez-Pasamar S., Sepulcre J., Torrealdea J., Bagnato F., et al. Modeling the effector-regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis. BMC Syst. Biol. 2011;5doi: 10.1186/1752-0509-5-114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> By changing parameters in the Teff-Treg feedback loop, under continual stochastic external stimulus from antigens, the model reproduced spontaneous and apparently stochastic immune relapses. The irreversible damage from each episode accumulates over time. Novel predictions include the suggestion that the timing of Treg immunotherapy in the immune response cycle is critical in determining whether intervention is beneficial or deleterious.
Modèles de facteurs immunitaires. Bien qu'il existe de nombreux modèles informatiques du système immunitaire,<ref>Pigozzo A.B., Macedo G.C., Santos R.W., Lobosco M. On the computational modeling of the innate immune system. BMC Bioinform. 2013;14 doi: 10.1186/1471-2105-14-S6-S7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> ceux liés à la SEP modélisent généralement des réseaux d'interactions génétiques, représentés soit par des ensembles d'équations différentielles ordinaires (ODE), soit par des réseaux booléens. Un modèle de biologie des systèmes d'un mécanisme cellulaire possible de RRMS a révélé une rupture de l'homéostasie des cellules effectrices (Teff) et T régulatrices (Treg).<ref>Doerck S., Göbel K., Weise G., Schneider-Hohendorf T., Reinhardt M., Hauff P., Schwab N., Linker R., Mäurer M., Meuth S.G., et al. Temporal pattern of ICAM-I mediated regulatory T cell recruitment to sites of inflammation in adoptive transfer model of multiple sclerosis. PLoS ONE. 2010;5:e15478. doi: 10.1371/journal.pone.0015478. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref><ref>De Mendizábal N.V., Carneiro J., Solé R.V., Goñi J., Bragard J., Martinez-Forero I., Martinez-Pasamar S., Sepulcre J., Torrealdea J., Bagnato F., et al. Modeling the effector-regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis. BMC Syst. Biol. 2011;5doi: 10.1186/1752-0509-5-114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref>En modifiant les paramètres de la boucle de rétroaction Teff-Treg, sous un stimulus externe stochastique continu des antigènes, le modèle a reproduit des rechutes immunitaires spontanées et apparemment stochastiques. Les dommages irréversibles de chaque épisode s'accumulent au fil du temps. Les nouvelles prédictions incluent la suggestion que le moment de l'immunothérapie Treg dans le cycle de réponse immunitaire est essentiel pour déterminer si l'intervention est bénéfique ou délétère.


Models of Mitochondrial Dysfunction. As mentioned above, myelin enables more energy efficient AP conduction along the axon. The increased energy demands placed on the demyelinated axon represents yet another challenge to the afflicted neuron. Beyond the loss of saltatory conduction, there is mounting evidence of a critical role for astrocytes and oligodendrocytes in supplying energy to neurons and this process has also been the subject of computational modeling.<ref>Jolivet R., Coggan J.S., Allaman I., Magistretti P.J. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Comput. Biol. 2015;11:e1004036. doi: 10.1371/journal.pcbi.1004036. [PMC free article] [PubMed] [CrossRef]</ref>
Modèles de dysfonctionnement mitochondrial. Comme mentionné ci-dessus, la myéline permet une conduction AP plus économe en énergie le long de l'axone. Les demandes énergétiques accrues placées sur l'axone démyélinisé représentent encore un autre défi pour le neurone affligé. Au-delà de la perte de conduction saltatoire, il existe de plus en plus de preuves du rôle critique des astrocytes et des oligodendrocytes dans la fourniture d'énergie aux neurones et ce processus a également fait l'objet d'une modélisation informatique..<ref>Jolivet R., Coggan J.S., Allaman I., Magistretti P.J. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Comput. Biol. 2015;11:e1004036. doi: 10.1371/journal.pcbi.1004036. [PMC free article] [PubMed] [CrossRef]</ref>


There are many ways mitochondrial function can go awry and the compensatory pathways are equally complicated.<ref name=":8" /><ref name=":12" /><ref name=":13" /> For example, mitochondrial dysfunction can be rooted in perturbed Ca2+ signaling within mitochondria, disrupted proton gradients or electron chain, reduction-oxidation imbalance as well as the consequences of reduced ATP availability, locally and globally. Multi-scale models of heart, for example, have been used to link altered mitochrondrial Ca2+ signaling to arrhythmia [60]. Using mitochondrial network modeling, this study demonstrated how even slightly too much reactive oxygen species can trigger a cell-wide collapse of mitochondrial membrane potential. This is an excellent example of how a computational model can link processes occurring at different levels, and it is precisely these linkages that must be established in the field of demyelination diseases.
Il existe de nombreuses façons dont la fonction mitochondriale peut mal tourner et les voies compensatoires sont tout aussi compliquées.<ref name=":8" /><ref name=":12" /><ref name=":13" />Par exemple, le dysfonctionnement mitochondrial peut être enraciné dans la signalisation Ca2+ perturbée dans les mitochondries, les gradients de protons ou la chaîne électronique perturbés, le déséquilibre réduction-oxydation ainsi que les conséquences de la disponibilité réduite de l'ATP, localement et globalement. Des modèles multi-échelles du cœur, par exemple, ont été utilisés pour lier la signalisation mitochondriale altérée du Ca2+ à l'arythmie [60]. En utilisant la modélisation du réseau mitochondrial, cette étude a démontré comment même un peu trop d'espèces réactives de l'oxygène peut déclencher un effondrement à l'échelle cellulaire du potentiel de la membrane mitochondriale. C'est un excellent exemple de la façon dont un modèle informatique peut relier des processus se produisant à différents niveaux, et ce sont précisément ces liens qui doivent être établis dans le domaine des maladies de démyélinisation.


=== Missing Links and the Need for Integration ===
=== Missing Links and the Need for Integration ===
Editor, Editors, USER, editor, translator
5,845

edits