Store:LTcondilo
Distanze e Direzioni
Condilo Laterotrusivo
Questo paragrafo illustra un processo matematico utilizzato per calcolare la distanza e l'angolo formato tra due segmenti in un piano 2D, con applicazione nella cinematica mandibolare. La spiegazione riguarda come determinare l'angolo tra due vettori che rappresentano movimenti articolari all'interno di un sistema articolare, ad esempio i condili durante i movimenti della mandibola (Figura 2 e Tabella 1).
Tabella 1 | ||||
---|---|---|---|---|
Tracciato masticatorio | Markers | Distanza (mm) | Direzione
(X - antero-posteriore) |
Direzione dinamica
(Y - latero-mediale) |
Figura 2: | 2 | 1.70 | Nessuno | Lateralizzazione |
3 | 4.93 | Avanti | Lateralizzazione | |
4 | 6.57 | Avanti | Lateralizzazione | |
5 | 3.51 | Avanti | Lateralizzazione | |
6 | 1.07 | Indietro | Medializzazione | |
7* | 1.05 | Indietro | Medializzazione | |
8 | 0.43 | Indietro | Medializzazione | |
Osservando la figura e la tabella, possiamo estrapolare le distanze dei punti marcati dallo strumento di replicazione dei movimenti mandibolari. Nello specifico, la distanza tra il punto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1L} e il punto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7L} è stata correttamente calcolata come circa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.05 \, \text{mm}} , con una direzione calcolata come: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta = \arccos(0.840) \approx 33.57^\circ}
Per chi desidera approfondire il formalismo matematico, riportiamo il calcolo dettagliato nel popup interattivo.
Dobbiamo calcolare la distanza euclidea tra i punti Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1 = (63.1721, -59.6914)} e Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_7 = (57.7, -50.8)} . La formula per la distanza euclidea tra due punti Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_1, y_1)} e Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_2, y_2)} è: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{distanza} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.} Sostituendo i valori: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{distanza} = \sqrt{(57.7 - 63.1721)^2 + (-50.8 - (-59.6914))^2}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{distanza} = \sqrt{(-5.4721)^2 + (8.8914)^2} = \sqrt{29.96 + 79.06} = \sqrt{109.02} \approx 10.45 \, \text{pixel}.} . A questo punto, per convertire in millimetri, moltiplichiamo la distanza in pixel per il fattore di conversione: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{distanza in mm} = 10.45 \times 0.1007 \approx 1.05 \, \text{mm}.} Ora possiamo calcolare l'angolo Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} utilizzando la formula per il coseno dell'angolo tra due vettori: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}.} Infine, l'angolo Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} è calcolato tramite la funzione arccoseno: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta = \arccos(0.840) \approx 33.57^\circ.}