Difference between revisions of "Draft:Two Forms of Electrical Transmission Between Neurons"

no edit summary
Line 162: Line 162:
{{bib}}
{{bib}}


*Anastassiou C. A., Perin R., Markram H., Koch C. (2011). Ephaptic coupling of cortical neurons. Nat. Neurosci. 14, 217–223. 10.1038/nn.2727 [PubMed] [CrossRef] [Google Scholar]
*
*Armstrong C. M. (2007). Life among the axons. Annu. Rev. Physiol. 69, 1–18. 10.1146/annurev.physiol.69.120205.124448 [PubMed] [CrossRef] [Google Scholar]
*Arvanitaki A., Chalozonitis N., Costa H. (1964). Excitation of the giant neuron by crossed exponential transmembranal currents (aplysia fasciata). C. R. Seances Soc. Biol. Fil. 158, 2373–2377. [PubMed] [Google Scholar]
*Barrio L. C., Suchyna T., Bargiello T., Xu L. X., Roginski R. S., Bennett M. V., et al. (1991). Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc. Natl. Acad. Sci. U S A 88, 8410–8414. 10.1073/pnas.88.19.8410 [PMC free article][PubMed] [CrossRef] [Google Scholar]
*Beccari N. (1907). Richerche sulle cellule e fibre del mauthner e sulle conessioni in pesci es anfibii. Asrch. Ital. Anat. Embriol. 6, 660–705. [Google Scholar]
*Bennett M. V. (1966). Physiology of electrotonic junctions. Ann. N Y Acad. Sci. 137, 509–539. 10.1111/j.1749-6632.1966.tb50178.x [PubMed] [CrossRef] [Google Scholar]
*Bennett M. V., Crain S. M., Grundfest H. (1959). Electrophysiology of supramedullary neurons in spheroides maculatus. III. organization of the supramedullary neurons. J. Gen. Physiol. 43, 221–250. 10.1085/jgp.43.1.221 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Berzhanskaya J., Chernyy N., Gluckman B. J., Schiff S. J., Ascoli G. A. (2013). Modulation of hippocampal rhythms by subthreshold electric fields and network topology. J. Comput. Neurosci. 34, 369–389. 10.1007/s10827-012-0426-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Blot A., Barbour B. (2014). Ultra-rapid axon-axon ephaptic inhibition of cerebellar purkinje cells by the pinceau. Nat. Neurosci. 17, 289–295. 10.1038/nn.3624 [PubMed] [CrossRef] [Google Scholar]
*Bokil H., Laaris N., Blinder K., Ennis M., Keller A. (2001). Ephaptic interactions in the mammalian olfactory system. J. Neurosci. 21:RC173. 10.1523/jneurosci.21-20-j0004.2001 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Bravarenko N. I., Malyshev A. Y., Voronin L. L., Balaban P. M. (2005). Ephaptic feedback in identified synapses in mollusk neurons. Neurosci. Behav. Physiol. 35, 781–787. 10.1007/s11055-005-0124-z [PubMed] [CrossRef] [Google Scholar]
*Brooks C. M., Eccles J. C. (1947). An electrical hypothesis of central inhibition. Nature 159, 760–764. 10.1038/159760a0 [PubMed] [CrossRef] [Google Scholar]
*Bruzzone R., Hormuzdi S. G., Barbe M. T., Herb A., Monyer H. (2003). Pannexins, a family of gap junction proteins expressed in brain. Proc. Natl. Acad. Sci. U S A 100, 13644–13649. 10.1073/pnas.2233464100 [PMC free article][PubMed] [CrossRef] [Google Scholar]
*Byzov A. L., Shura-Bura T. M. (1986). Electrical feedback mechanism in the processing of signals in the outer plexiform layer of the retina. Vision Res. 26, 33–44. 10.1016/0042-6989(86)90069-6 [PubMed] [CrossRef] [Google Scholar]
*Condorelli D. F., Parenti R., Spinella F., Trovato Salinaro A., Belluardo N., Cardile V., et al. . (1998). Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur. J. Neurosci. 10, 1202–1208. 10.1046/j.1460-9568.1998.00163.x [PubMed] [CrossRef] [Google Scholar]
*Connors B. W. (2017). Synchrony and so much more: diverse roles for electrical synapses in neural circuits. Dev. Neurobiol. 77, 610–624. 10.1002/dneu.22493 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Dahl G., Locovei S. (2006). Pannexin: to gap or not to gap, is that a question? IUBMB Life 58, 409–419. 10.1080/15216540600794526 [PubMed] [CrossRef] [Google Scholar]
*Delmar M., Duffy H. S., Sorgen P. L., Taffet S. M., Spray D. C. (2004). “Molecular organization and regulation of the cardiac gap junction channel connexin43,” in Cardiac Electrophysiol, eds Zipes D. P., Jalife J. (Philadelphia: W.B. Saunders; ), 66–76. [Google Scholar]
*Dobrenis K., Chang H.-Y., Pina-Benabou M. H., Woodroffe A., Lee S. C., Rozental R., et al. . (2005). Human and mouse microglia express connexin36 and functional gap junctions are formed between rodent microglia and neurons. J. Neurosci. Res. 82, 306–315. 10.1002/jnr.20650 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Eccles J. C. (1946). Synaptic potentials of motoneurons. J. Neurophysiol. 9, 87–120. 10.1152/jn.1946.9.2.87 [PubMed] [CrossRef] [Google Scholar]
*Eccles J. C. (1961). The mechanism of synaptic transmission. Ergeb. Physiol. 51, 299–430. 10.1007/978-3-642-49946-3_8 [PubMed] [CrossRef] [Google Scholar]
*Eccles J. C. (1982). The synapse: from electrical to chemical transmission. Annu. Rev. Neurosci. 5, 325–339. 10.1146/annurev.ne.05.030182.001545 [PubMed] [CrossRef] [Google Scholar]
*Faber D. S., Korn H. (1973). A neuronal inhibition mediated electrically. Science 179, 577–578. 10.1126/science.179.4073.577 [PubMed] [CrossRef] [Google Scholar]
*Faber D. S., Korn H. (1989). Electrical field effects: their relevance in central neural networks. Physiol. Rev. 69, 821–863. 10.1152/physrev.1989.69.3.821 [PubMed] [CrossRef] [Google Scholar]
*Fatt P. (1954). Biophysics of junctional transmission. Physiol. Rev. 34, 674–710. 10.1152/physrev.1954.34.4.674 [PubMed] [CrossRef] [Google Scholar]
*Finger S. (2005). Minds Behind the Brain. USA: Oxford University Press. [Google Scholar]
*Franklin B. (1751). Experiments and Observations on Electricity Made at Philadelphia in America. Printed and sold by E. Cave, at St. John’s Gate. 10.5479/sil.211644.39088000092304. [CrossRef] [Google Scholar]
*Fröhlich F., McCormick D. A. (2010). Endogenous electric fields may guide neocortical network activity. Neuron 67, 129–143. 10.1016/j.neuron.2010.06.005 [PMC free article][PubMed] [CrossRef] [Google Scholar]
*Furshpan E. J. (1964). “Electrical transmission” at an excitatory synapse in a vertebrate brain. Science 144, 878–880. 10.1126/science.144.3620.878 [PubMed] [CrossRef] [Google Scholar]
*Furshpan E. J., Furukawa T. (1962). Intracellular and extracellular responses of the several regions of the mauthner cell of the goldfish. J. Neurophysiol. 25, 732–771. 10.1152/jn.1962.25.6.732 [PubMed] [CrossRef] [Google Scholar]
*Furshpan E. J., Potter D. D. (1959). Transmission at the giant motor synapses of the crayfish. J. Physiol. 145, 289–325. 10.1113/jphysiol.1959.sp006143 [PMC free article][PubMed] [CrossRef] [Google Scholar]
*Furukawa T., Furshpan E. J. (1963). Two inhibitory mechanisms in the mauthner neurons of goldfish. J. Neurophysiol. 26, 140–176. 10.1152/jn.1963.26.1.140 [PubMed] [CrossRef] [Google Scholar]
*Galvani L. (1791). Aloysii Galvani De viribus electricitatis in motu musculari commentarius. Bononiae: Ex Typographia Instituti Scientiarum, 1791. 10.5479/sil.324681.39088000932442. [PMC free article][PubMed] [CrossRef] [Google Scholar]
*Getting P. A. (1974). Modification of neuron properties by electrotonic synapses. I. input resistance, time constant and integration. J. Neurophysiol. 37, 846–857. 10.1152/jn.1974.37.5.846 [PubMed] [CrossRef] [Google Scholar]
*Giaume C., Kado R. T., Korn H. (1987). Voltage-clamp analysis of a crayfish rectifying synapse. J. Physiol. 386, 91–112. 10.1113/jphysiol.1987.sp016524 [PMC free article][PubMed] [CrossRef] [Google Scholar]
*Goodenough D. A., Paul D. L. (2009). Gap junctions. Cold Spring Harb. Perspect. Biol. 1:a002576. 10.1101/cshperspect.a002576 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Han K.-S., Guo C., Chen C. H., Witter L., Osorno T., Regehr W. G. (2018). Ephaptic coupling promotes synchronous firing of cerebellar purkinje cells. Neuron 100, 564.e3–578.e3. 10.1016/j.neuron.2018.09.018 [PubMed] [CrossRef] [Google Scholar]
*Hodgkin A. L., Huxley A. F. (1952). Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. J. Physiol. 116, 449–472. 10.1113/jphysiol.1952.sp004717 [PMC free article][PubMed] [CrossRef] [Google Scholar]
*Katz B. (1969). “The release of neural transmitter substances,” in Sherrington Lecture, (Liverpool: Liverpool University Press; ). [Google Scholar]
*Korn H., Axelrad H. (1980). Electrical inhibition of purkinje cells in the cerebellum of the rat. Proc. Natl. Acad. Sci. U S A 77, 6244–6247. 10.1073/pnas.77.10.6244 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Korn H., Faber D. S. (1976). Vertebrate central nervous system: same neurons mediate both electrical and chemical inhibitions. Science 194, 1166–1169. 10.1126/science.186868 [PubMed] [CrossRef] [Google Scholar]
*Korn H., Triller A., Faber D. S. (1978). Structural correlates of recurrent collateral interneurons producing both electrical and chemical inhibitions of the mauthner cell. Proc. R. Soc. London. Ser. B Biol. Sci. 202, 533–538. 10.1098/rspb.1978.0085 [PubMed] [CrossRef] [Google Scholar]
*Kramer R. H., Davenport C. M. (2015). Lateral inhibition in the vertebrate retina: the case of the missing neurotransmitter. PLoS Biol. 13:e1002322. 10.1371/journal.pbio.1002322 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Li Z., Nair S. K. (2012). Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals? Protein Sci. 21, 1403–1417. 10.1002/pro.2132 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Llinás R. (2001). I of the Vortex: from Neurons to Self.Cambridge: MIT Press. [Google Scholar]
*MacVicar B. A., Thompson R. J. (2010). Non-junction functions of pannexin-1 channels. Trends Neurosci. 33, 93–102. 10.1016/j.tins.2009.11.007 [PubMed] [CrossRef] [Google Scholar]
*Martin A. O., Mathieu M. N., Chevillard C., Guérineau N. C. (2001). Gap junctions mediate electrical signaling and ensuing cytosolic Ca2+ increases between chromaffin cells in adrenal slices: a role in catecholamine release. J. Neurosci.21, 5397–5405. 10.1523/jneurosci.21-15-05397.2001 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Miller A. C., Pereda A. E. (2017). The electrical synapse: molecular complexities at the gap and beyond. Dev. Neurobiol. 77, 562–574. 10.1002/dneu.22484 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Moreno A. P., Berthoud V. M., Pérez-Palacios G., Pérez-Armendariz E. M. (2005). Biophysical evidence that connexin-36 forms functional gap junction channels between pancreatic mouse β-cells. Am. J. Physiol. Endocrinol. Metab.288, E948–E956. 10.1152/ajpendo.00216.2004 [PubMed] [CrossRef] [Google Scholar]
*Musa H., Fenn E., Crye M., Gemel J., Beyer E. C., Veenstra R. D. (2004). Amino terminal glutamate residues confer spermine sensitivity and affect voltage gating and channel conductance of rat connexin40 gap junctions. J. Physiol. 557, 863–878. 10.1113/jphysiol.2003.059386 [PMC free article][PubMed] [CrossRef] [Google Scholar]
*Nagy J. I., Pereda A. E., Rash J. E. (2018). Electrical synapses in mammalian CNS: past eras, present focus and future directions. Biochim. Biophys. Acta Biomembr. 1860, 102–123. 10.1016/j.bbamem.2017.05.019 [PMC free article][PubMed] [CrossRef] [Google Scholar]
*O’Brien J. (2014). The ever-changing electrical synapse. Curr. Opin. Neurobiol. 29, 64–72. 10.1016/j.conb.2014.05.011 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*O’Brien J. (2017). Design principles of electrical synaptic plasticity. Neurosci. Lett. [Epub ahead of print]. 10.1016/j.neulet.2017.09.003 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Oh S., Rubin J. B., Bennett M. V., Verselis V. K., Bargiello T. A. (1999). Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32. J. Gen. Physiol. 114, 339–364. 10.1085/jgp.114.3.339 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Oshima A., Tani K., Fujiyoshi Y. (2016). Atomic structure of the innexin-6 gap junction channel determined by cryo-EM. Nat. Commun. 7:13681. 10.1038/ncomms13681 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Palacios-Prado N., Hoge G., Marandykina A., Rimkute L., Chapuis S., Paulauskas N., et al. . (2013). Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36. J. Neurosci. 33, 4741–4753. 10.1523/jneurosci.2825-12.2013 [PMC free article][PubMed] [CrossRef] [Google Scholar]
*Palacios-Prado N., Huetteroth W., Pereda A. E. (2014). Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification. Front. Cell. Neurosci. 8:324. 10.3389/fncel.2014.00324 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Panchin Y., Kelmanson I., Matz M., Lukyanov K., Usman N., Lukyanov S. (2000). A ubiquitous family of putative gap junction molecules. Curr. Biol. 10, R473–R474. 10.1016/s0960-9822(00)00576-5 [PubMed] [CrossRef] [Google Scholar]
*Pappas G. D., Bennett M. V. (1966). Specialized junctions involved in electrical transmission between neurons. Ann. N Y Acad. Sci. 137, 495–508. 10.1111/j.1749-6632.1966.tb50177.x [PubMed] [CrossRef] [Google Scholar]
*Pereda A. E. (2014). Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250–263. 10.1038/nrn3708 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Pereda A. E. (2015). Neurobiology: all synapses are created equal. Curr. Biol. 25, R38–R41. 10.1016/j.cub.2014.11.029 [PubMed] [CrossRef] [Google Scholar]
*Pereda A. E., Bennett M. V. L. (2017). “Electrical synapses in fish: relevance to synaptic transmission,” in Electrical Coupling and Microcircuits: Network Functions and Plasticity, ed. Jing J. (London, UK: Academic Press; ), 1–18. [Google Scholar]
*Pereda A. E., Curti S., Hoge G., Cachope R., Flores C. E., Rash J. E. (2013). Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity. Biochim. Biophys. Acta 1828, 134–146. 10.1016/j.bbamem.2012.05.026 [PMC free article][PubMed] [CrossRef] [Google Scholar]
*Pereda A. E., Faber D. S. (2011). Physiology of the Mauthner Cell: Discovery and Properties. Amsterdam: Elsevier Inc. [Google Scholar]
*Pereda A. E., Macagno E. (2017). Electrical transmission: two structures, same functions? Dev. Neurobiol. 77, 517–521. 10.1002/dneu.22488 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Phelan P. (2005). Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim. Biophys. Acta 1711, 225–245. 10.1016/j.bbamem.2004.10.004 [PubMed] [CrossRef] [Google Scholar]
*Phelan P., Goulding L. A., Tam J. L., Allen M. J., Dawber R. J., Davies J. A., et al. . (2008). Molecular mechanism of rectification at identified electrical synapses in the drosophila giant fiber system. Curr. Biol. 18, 1955–1960. 10.1016/j.cub.2008.10.067 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Phelan P., Stebbings L. A., Baines R. A., Bacon J. P., Davies J. A., Ford C. (1998). ''Drosophila'' shaking-B protein forms gap junctions in paired xenopus oocytes. Nature 391, 181–184. 10.1038/34426 [PubMed] [CrossRef] [Google Scholar]
*Piccolino M. (1998). Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain Res. Bull. 46, 381–407. 10.1016/s0361-9230(98)00026-4 [PubMed] [CrossRef] [Google Scholar]
*Rash J. E., Curti S., Vanderpool K. G., Kamasawa N., Nannapaneni S., Palacios-Prado N., et al. . (2013). Molecular and functional asymmetry at a vertebrate electrical synapse. Neuron 79, 957–969. 10.1016/j.neuron.2013.06.037 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Rash J. E., Staines W. A., Yasumura T., Patel D., Furman C. S., Stelmack G. L., et al. . (2000). Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Proc. Natl. Acad. Sci. U S A 97, 7573–7578. 10.1073/pnas.97.13.7573 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Robertson J. D. (1963). The occurrence of a subunit pattern in the unit membranes of club endings in mauthner cell synapses in goldfish brains. J. Cell Biol. 19, 201–221. 10.1083/jcb.19.1.201 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Robertson J. D., Bodenheimer T. S., Stage D. E. (1963). The ultrastructure of mauthner cell synapses and nodes in goldfish brains. J. Cell Biol. 19, 159–199. 10.1083/jcb.19.1.159 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Sheng M., Sabatini B. L., Sudhof T. (2012). The Synapse, eds Sheng M., Sabatini B. L., Südhof T. (New York, NY: Cold Spring Harbor Laboratory Press; ). [Google Scholar]
*Skerrett I. M., Williams J. B. (2017). A structural and functional comparison of gap junction channels composed of connexins and innexins. Dev. Neurobiol. 77, 522–547. 10.1002/dneu.22447 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Söhl G., Maxeiner S., Willecke K. (2005). Expression and functions of neuronal gap junctions. Nat. Rev. Neurosci. 6, 191–200. 10.1038/nrn1627 [PubMed] [CrossRef] [Google Scholar]
*Sohn E. (2003). “Electricity’s spark of life,” in Sci. News Students 1. Available online at: www.sciencenewsforstudents.org
*Thompson R. J., Jackson M. F., Olah M. E., Rungta R. L., Hines D. J., Beazely M. A., et al. . (2008). Activation of Pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322, 1555–1559. 10.1126/science.1165209 [PubMed] [CrossRef] [Google Scholar]
*Van der Goes van Naters W. (2013). Inhibition among olfactory receptor neurons. Front. Hum. Neurosci. 7:690. 10.3389/fnhum.2013.00690 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Verselis V. K., Ginter C. S., Bargiello T. A. (1994). Opposite voltage gating polarities of two closely related connexins. Nature 368, 348–351. 10.1038/368348a0 [PubMed] [CrossRef] [Google Scholar]
*Vroman R., Klaassen L. J., Kamermans M. (2013). Ephaptic communication in the vertebrate retina. Front. Hum. Neurosci. 7:612. 10.3389/fnhum.2013.00612 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Watanabe A. (1958). The interaction of electrical activity among neurons of lobster cardiac ganglion. Jpn. J. Physiol. 8, 305–318. 10.2170/jjphysiol.8.305 [PubMed] [CrossRef] [Google Scholar]
*Weiss S., Faber D. S. (2010). Field effects in the CNS play functional roles. Front. Neural Circuits 4:15. 10.3389/fncir.2010.00015 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
*Weiss S. A., Preuss T., Faber D. S. (2008). A role of electrical inhibition in sensorimotor integration. Proc. Natl. Acad. Sci. U S A 105, 18047–18052. 10.1073/pnas.0806145105 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
9,326

edits