Difference between revisions of "Dinamiche fisiologiche nelle malattie demielinizzanti: svelare relazioni complesse attraverso la modellazione al computer"

no edit summary
Line 91: Line 91:




The above discussion raises the important point that although much ado has been made about immune mechanisms, their connection with clinical changes is largely correlational. One must consider the intermediary effects on axonal function, namely the primary and secondary (compensatory) changes in axon excitability, in order to appreciate how neurological function is altered. Those changes are not simple and direct consequences of demyelination but, instead, suggest that axonal physiology itself changes in response to demyelination. Some of those changes are adaptive whereas others are maladaptive, or perhaps adaptive changes can become maladaptive as the situation (myelination status) evolves. If changes in axonal physiology dictate the manifestation of various symptoms, then symptom management will largely fall on treatments that aim to manipulate axon physiology. Strategically developing such treatments require a deep, mechanistic understanding of axonal excitability and its regulation.
La discussione di cui sopra solleva il punto importante che, sebbene sia stato fatto molto rumore sui meccanismi immunitari, la loro connessione con i cambiamenti clinici è in gran parte correlazionale. Bisogna considerare gli effetti intermedi sulla funzione assonale, vale a dire i cambiamenti primari e secondari (compensativi) nell'eccitabilità degli assoni, per apprezzare come la funzione neurologica è alterata. Questi cambiamenti non sono conseguenze semplici e dirette della demielinizzazione ma, invece, suggeriscono che la stessa fisiologia assonale cambia in risposta alla demielinizzazione. Alcuni di questi cambiamenti sono adattivi mentre altri sono disadattivi, o forse i cambiamenti adattivi possono diventare disadattivi man mano che la situazione (stato di mielinizzazione) si evolve. Se i cambiamenti nella fisiologia assonale determinano la manifestazione di vari sintomi, la gestione dei sintomi ricadrà in gran parte su trattamenti che mirano a manipolare la fisiologia degli assoni. Lo sviluppo strategico di tali trattamenti richiede una profonda comprensione meccanicistica dell'eccitabilità assonale e della sua regolazione.


=== Axon Pathobiology ===
=== Patobiologia degli assoni ===


==== Structural and Molecular Changes ====
=== Cambiamenti strutturali e molecolari ===
Axons are profoundly affected by demyelination. Axon morphology becomes irregular or swollen, often with a beaded appearance. Focal accumulation of proteins (by fast axonal transport) is also observed. In chronic active plaques, axonal loss of 20%–80% is apparent within peri-plaque white matter and normal distant white matter.<ref>Moll N.M., Rietsch A.M., Thomas S., Ransohoff A.J., Lee J.C., Fox R., Chang A., Ransohoff R.M., Fisher E. Multiple sclerosis normal-appearing white matter: Pathology-imagig correlations. Ann. Neurol. 2011;70:764–773. doi: 10.1002/ana.22521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> In early active and chronic active plaques, damage is thought to be caused by inflammatory and immune factors released during acute inflammatory demyelination. Proposed mediators include proteases, cytokines, excitotoxins and free radicals. Neuronal antigens are targets of immune reaction leading to CNS inflammation. Other factors causing axonal dysfunction or death include a lack of trophic support from myelin and oligodendrocytes, damage from soluble or cellular immune factors still present in the inactive plaque, and chronic mitochondrial failure in the setting of increased energy demands.<ref name=":7">Lucchinetti C., Brück W., Parisi J., Scheithauer B., Rodriguez M., Lassmann H. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann. Neurol. 2000;47:707–717. doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q. [PubMed] [CrossRef] [Google Scholar]</ref> A critical role for oligodendrocytes and Schwann cells in axon survival has also been attributed to peroxisomes, lipid metabolism and reactive oxygen species (ROS) detoxification.<ref>Kassmann C.M., Nave K.A. Oligodendroglial impact on axonal function and survival— A hypothesis. Curr. Opin. Neurol. 2008;21:235–241. doi: 10.1097/WCO.0b013e328300c71f. [PubMed] [CrossRef] [Google Scholar]</ref>
Gli assoni sono profondamente influenzati dalla demielinizzazione. La morfologia dell'assone diventa irregolare o rigonfia, spesso con un aspetto a perline. Si osserva anche un accumulo focale di proteine (tramite trasporto assonale veloce). Nelle placche attive croniche, la perdita assonale del 20%-80% è evidente all'interno della sostanza bianca peri-placca e della normale sostanza bianca distante.<ref>Moll N.M., Rietsch A.M., Thomas S., Ransohoff A.J., Lee J.C., Fox R., Chang A., Ransohoff R.M., Fisher E. Multiple sclerosis normal-appearing white matter: Pathology-imagig correlations. Ann. Neurol. 2011;70:764–773. doi: 10.1002/ana.22521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> Nelle placche attive precoci e croniche, si ritiene che il danno sia causato da fattori infiammatori e immunitari rilasciati durante la demielinizzazione infiammatoria acuta. I mediatori proposti includono proteasi, citochine, eccitotossine e radicali liberi. Gli antigeni neuronali sono bersagli della reazione immunitaria che porta all'infiammazione del sistema nervoso centrale. Altri fattori che causano la disfunzione assonale o la morte includono una mancanza di supporto trofico da mielina e oligodendrociti, danni da fattori immunitari solubili o cellulari ancora presenti nella placca inattiva e insufficienza mitocondriale cronica nell'ambito di una maggiore richiesta di energia.<ref name=":7">Lucchinetti C., Brück W., Parisi J., Scheithauer B., Rodriguez M., Lassmann H. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann. Neurol. 2000;47:707–717. doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q. [PubMed] [CrossRef] [Google Scholar]</ref> Un ruolo critico per gli oligodendrociti e le cellule di Schwann nella sopravvivenza degli assoni è stato anche attribuito ai perossisomi, al metabolismo lipidico e alla disintossicazione delle specie reattive dell'ossigeno (ROS).<ref>Kassmann C.M., Nave K.A. Oligodendroglial impact on axonal function and survival— A hypothesis. Curr. Opin. Neurol. 2008;21:235–241. doi: 10.1097/WCO.0b013e328300c71f. [PubMed] [CrossRef] [Google Scholar]</ref>


Remyelination is often observed as shadow plaques formed by the recruitment of undifferentiated oligodendrocyte precursors that migrate to and surround the lesions enabling thin layers of remyelination.<ref>Scolding N., Franklin R. Axon loss in multiple sclerosis. Lancet. 1998;352:340–341. doi: 10.1016/S0140-6736(05)60463-1. [PubMed] [CrossRef] [Google Scholar]</ref> This process occurs mostly in acute active plaques, but also in chronic phases. This observation triggered the development of a new monoclonal anitbody directed against LINGO-1 (Anti-LINGO-1). Binding of LINGO-1 to Nogo receptors prevents remyelinating processes in the CNS; inhibition of this interaction thus enables significant remyelination in animals with experimental autoimmune encephalomyelitis.<ref>Mi S., Miller R.H., Lee X., Scott M.L., Shulag-Morskaya S., Shao Z., Chang J., Thill G., Levesque M., Zhang M., et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci. 2005;8:745–751. doi: 10.1038/nn1460. [PubMed] [CrossRef] [Google Scholar]</ref>
La rimielinizzazione è spesso osservata come placche ombra formate dal reclutamento di precursori di oligodendrociti indifferenziati che migrano e circondano le lesioni consentendo sottili strati di rimielinizzazione.<ref>Scolding N., Franklin R. Axon loss in multiple sclerosis. Lancet. 1998;352:340–341. doi: 10.1016/S0140-6736(05)60463-1. [PubMed] [CrossRef] [Google Scholar]</ref> Questo processo si verifica principalmente nelle placche attive acute, ma anche nelle fasi croniche. Questa osservazione ha innescato lo sviluppo di un nuovo anticorpo monoclonale diretto contro LINGO-1 (Anti-LINGO-1). Il legame di LINGO-1 ai recettori Nogo previene i processi di rimielinizzazione nel SNC; l'inibizione di questa interazione consente quindi una significativa rimielinizzazione negli animali con encefalomielite autoimmune sperimentale.<ref>Mi S., Miller R.H., Lee X., Scott M.L., Shulag-Morskaya S., Shao Z., Chang J., Thill G., Levesque M., Zhang M., et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci. 2005;8:745–751. doi: 10.1038/nn1460. [PubMed] [CrossRef] [Google Scholar]</ref>


During the disease process, autoreactive lymphocytes and macrophages can cross the blood brain barrier and accumulate in the brain and spinal cord.<ref>Bittner S., Ruck T., Schuhmann M.K., Herrmann A.M., Maati H.M., Bobak N., Göbel K., Langhauser F., Stegner D., Ehling P., et al. 2013 Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat. Med. 2013;19:1161–1165. doi: 10.1038/nm.3303. [PubMed] </ref> Regulatory lymphocytes (Tregs) fail to suppress effector cells-mostly cytotoxic CD8+ cells.<ref>Viglietta V., Baecher-Allan C., Weiner H.L., Hafler D.A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 2004;199:971–999. doi: 10.1084/jem.20031579.[PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> Release of pro-inflammatory cytokines recruits naive microglia, which make contact with an oligodendrocyte-myelin unit by interactions with Fc and complement receptors. A cytotoxic death-triggering signal is then transmitted through surface bound tumor necrosis factor α (TNFα).<ref>Zajicek J.P., Wing M., Scolding N.J., Compston D.A. Interactions between oligodendrocytes and microglia. A major role for complement and tumour necrosis factor in oligodendrocyte adherence and killing. Brain. 1992;115:1611–1631. [PubMed] [Google Scholar]</ref> This occurs in concert with extensive axonal damage.<ref name=":1" />
Durante il processo patologico, i linfociti autoreattivi e i macrofagi possono attraversare la barriera ematoencefalica e accumularsi nel cervello e nel midollo spinale.<ref>Bittner S., Ruck T., Schuhmann M.K., Herrmann A.M., Maati H.M., Bobak N., Göbel K., Langhauser F., Stegner D., Ehling P., et al. 2013 Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat. Med. 2013;19:1161–1165. doi: 10.1038/nm.3303. [PubMed] </ref> I linfociti regolatori (Tregs) non riescono a sopprimere le cellule effettrici, per lo più cellule CD8+ citotossiche.<ref>Viglietta V., Baecher-Allan C., Weiner H.L., Hafler D.A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 2004;199:971–999. doi: 10.1084/jem.20031579.[PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> Il rilascio di citochine pro-infiammatorie recluta la microglia ingenua, che entra in contatto con un'unità oligodendrocita-mielina mediante interazioni con Fc e recettori del complemento. Un segnale citotossico che innesca la morte viene quindi trasmesso attraverso il fattore di necrosi tumorale α (TNFα)<ref>Zajicek J.P., Wing M., Scolding N.J., Compston D.A. Interactions between oligodendrocytes and microglia. A major role for complement and tumour necrosis factor in oligodendrocyte adherence and killing. Brain. 1992;115:1611–1631. [PubMed] [Google Scholar]</ref> legato alla superficie. Ciò si verifica in concerto con un esteso danno assonale.<ref name=":1" />


Lucchinetti el al.<ref name=":7" /> proposed four distinct immunopatterns of plaque formation found in patients at different stages of the disease. Type I and II plaques are dominated by T-lymphocyte and macrophage inflammation and are thought to mimic T-cell or T-cell plus antibody autoimmune encephalomyelitis models, respectively. Myelin loss in type I plaques may be caused by toxic factors released by activated macrophages, whereas IgG and complement deposition suggest a role of antibodies in type II plaques. In contrast, patterns III and IV show large oligodendrocyte dystrophy. Pattern III is thought to be related to hypoxia-induced lesions which are driven by defects in mitochondrial function,<ref name=":8">Nikić I., Merkler D., Sorbara C., Brinkoetter M., Kreutzfeldt M., Bareyre F.M., Brück W., Bishop D., Misgeld T., Kerschensteiner M. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 2011;17:495–499. doi: 10.1038/nm.2324. [PubMed] [CrossRef] [Google Scholar]</ref> whereas pattern IV lesions are associated with profound non-apoptotic death of oligodendrocytes in periplaque white matter.
Lucchinetti el al.<ref name=":7" /> proposto quattro distinti immunopattern di formazione della placca riscontrati in pazienti in diversi stadi della malattia. Le placche di tipo I e II sono dominate dall'infiammazione dei linfociti T e dei macrofagi e si pensa che mimino rispettivamente i modelli di encefalomielite autoimmune a cellula T o a cellula T più anticorpi. La perdita di mielina nelle placche di tipo I può essere causata da fattori tossici rilasciati dai macrofagi attivati, mentre la deposizione di IgG e complemento suggerisce un ruolo degli anticorpi nelle placche di tipo II. Al contrario, i modelli III e IV mostrano una grande distrofia degli oligodendrociti. Si ritiene che il pattern III sia correlato alle lesioni indotte dall'ipossia che sono guidate da difetti nella funzione mitocondriale,<ref name=":8">Nikić I., Merkler D., Sorbara C., Brinkoetter M., Kreutzfeldt M., Bareyre F.M., Brück W., Bishop D., Misgeld T., Kerschensteiner M. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 2011;17:495–499. doi: 10.1038/nm.2324. [PubMed] [CrossRef] [Google Scholar]</ref> mentre le lesioni del pattern IV sono associate a morte profonda non apoptotica degli oligodendrociti nella sostanza bianca periplacca.


Barnett and Prineas<ref>Barnett M.H., Prineas J.W. Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesion. Ann. Neurol. 2004;55:458–468. doi: 10.1002/ana.20016. [PubMed] [CrossRef] [Google Scholar]</ref> analyzed lesions from patients directly after the onset of a relapse, during which active plaque formation was ongoing. Their results suggest that oligodendrocyte apoptosis and glial activation occur during early active plaque formation in the absence of inflammatory lymphocytes or myelin phagocytes. They proposed that the vulnerability of oligodendrocytes, described in Lucchinetti’s type III pattern, is present in the early stages of all plaque formation and is the trigger for subsequent post apoptotic necrosis which initiates the phagocytosis of myelin by macrophages at later stages. In vitro analyses of this process have implicated complement cascades, tumor necrosis factors or gaseous second messengers.<ref>Van der Laan L.J., Ruuls S.R., Weber K.S., Lodder I.J., Döpp E.A., Dijkstra C.D. Macrophage phagocytosis of myelin ''in vitro'' determined by flow cytometry: Phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-α and nitric oxide. J. Neuroimmunol. 1996;70:145–152. doi: 10.1016/S0165-5728(96)00110-5. [PubMed] [CrossRef] [Google Scholar]</ref> Although identification of plaques and monitoring of their progress has important clinical value, there is only a modest correlation between the demyelinating lesion load as determined by conventional MRI and the clinical disability of patients with MS (see above).
Barnett e Prineas<ref>Barnett M.H., Prineas J.W. Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesion. Ann. Neurol. 2004;55:458–468. doi: 10.1002/ana.20016. [PubMed] [CrossRef] [Google Scholar]</ref> hanno analizzato le lesioni dei pazienti subito dopo l'inizio di una ricaduta, durante la quale era in corso la formazione attiva della placca. I loro risultati suggeriscono che l'apoptosi degli oligodendrociti e l'attivazione gliale si verificano durante la formazione precoce della placca attiva in assenza di linfociti infiammatori o fagociti della mielina. Hanno proposto che la vulnerabilità degli oligodendrociti, descritta nel modello di tipo III di Lucchinetti, sia presente nelle prime fasi di tutta la formazione della placca ed è l'innesco per la successiva necrosi post apoptotica che avvia la fagocitosi della mielina da parte dei macrofagi nelle fasi successive. Le analisi in vitro di questo processo hanno implicato cascate del complemento, fattori di necrosi tumorale o secondi messaggeri gassosi.<ref>Van der Laan L.J., Ruuls S.R., Weber K.S., Lodder I.J., Döpp E.A., Dijkstra C.D. Macrophage phagocytosis of myelin ''in vitro'' determined by flow cytometry: Phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-α and nitric oxide. J. Neuroimmunol. 1996;70:145–152. doi: 10.1016/S0165-5728(96)00110-5. [PubMed] [CrossRef] [Google Scholar]</ref> Sebbene l'identificazione delle placche e il monitoraggio del loro progresso abbiano un importante valore clinico, esiste solo una modesta correlazione tra il carico della lesione demielinizzante determinato dalla risonanza magnetica convenzionale e la disabilità clinica dei pazienti con SM (vedi sopra).


==== Functional Changes ====
==== Modifiche funzionali ====
The mechanisms of functional impairment during demyelination often include the disruption of transmembrane Na+, K+ and Ca2+ ions, the dispersal of their corresponding ion channels, a decrease in the efficiency of AP conduction and a resulting metabolic crisis (Figure 3). Demyelination can readily explain conduction failure within the affected axon. If conduction does not completely fail, conduction velocity can nonetheless be slowed and differential slowing across different axons can cause variable conduction delays that result in desynchronized spiking.
I meccanismi di compromissione funzionale durante la demielinizzazione spesso includono l'interruzione degli ioni Na+, K+ e Ca2+ transmembrana, la dispersione dei canali ionici corrispondenti, una diminuzione dell'efficienza della conduzione AP e una conseguente crisi metabolica (Figura 3). La demielinizzazione può facilmente spiegare il fallimento della conduzione all'interno dell'assone interessato. Se la conduzione non fallisce completamente, la velocità di conduzione può comunque essere rallentata e il rallentamento differenziale tra diversi assoni può causare ritardi di conduzione variabili che si traducono in picchi desincronizzati.


Demyelination also allows denuded axons to become closely apposed, thus setting the stage for ephaptic interactions and crosstalk.<ref name=":1" /> Reflection can also occur because of impedance mismatch between myelinated and unmyelinated lengths of axon. On the other hand, hyperexcitability cannot be directly ascribed to demyelination; instead, secondary changes in intrinsic excitability need to be invoked to explain phenomena like ectopic spike generation and afterdischarge (AD). Alterations in excitability likely represent compensatory changes aimed at restoring function following the disruption caused directly by demyelination, consistent with a process referred to as homeostatic plasticity,<ref>Wang G., Thompson S.M. Maladaptive homeostatic plasticity in a rodent model of central pain syndrome: Thalamic hyperexcitability after spinothalamic tract lesions. J. Neurosci. 2008;28:11959–11969. doi: 10.1523/JNEUROSCI.3296-08.2008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> but that compensation can evidently be maladaptive. Each of the aforementioned outcomes, which are not mutually exclusive, contribute to producing different symptoms observed in demyelinating diseases.
La demielinizzazione consente inoltre agli assoni denudati di avvicinarsi strettamente, ponendo così le basi per le interazioni epatiche e il crosstalk.<ref name=":1" /> La riflessione può anche verificarsi a causa della mancata corrispondenza di impedenza tra le lunghezze mielinizzate e non mielinizzate dell'assone. D'altra parte, l'ipereccitabilità non può essere direttamente attribuita alla demielinizzazione; invece, i cambiamenti secondari nell'eccitabilità intrinseca devono essere invocati per spiegare fenomeni come la generazione di picchi ectopici e la post-dimissione (AD). Le alterazioni dell'eccitabilità rappresentano probabilmente cambiamenti compensatori volti a ripristinare la funzione in seguito all'interruzione causata direttamente dalla demielinizzazione, coerente con un processo denominato plasticità omeostatica,<ref>Wang G., Thompson S.M. Maladaptive homeostatic plasticity in a rodent model of central pain syndrome: Thalamic hyperexcitability after spinothalamic tract lesions. J. Neurosci. 2008;28:11959–11969. doi: 10.1523/JNEUROSCI.3296-08.2008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> ma tale compensazione può evidentemente essere disadattativa. Ciascuno dei suddetti esiti, che non si escludono a vicenda, contribuisce a produrre diversi sintomi osservati nelle malattie demielinizzanti.


Paroxysmal symptoms characterized by the sudden onset or intensification of symptoms such as spasm or shooting pain likely arise from AD or otherwise inappropriate burst-type spiking. Such spiking patterns suggest highly nonlinear interactions among the contributing ion currents<ref name=":9">Coggan J.S., Prescott S.A., Bartol T.M., Sejnowski T.J. Imbalance of ionic conductances contributes to diverse symptoms of demyelination. Proc. Natl. Acad. Sci. USA. 2010;107:20602–20609. doi: 10.1073/pnas.1013798107.[PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref><ref name=":10">Coggan J.S., Ocker G.K., Sejnowski T.J., Prescott S.A. Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models. J. Neural Eng. 2011;8 doi: 10.1088/1741-2560/8/6/065002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> and could, in theory at least, involve interactions between different regions of the neuron.<ref name=":11">Coggan J.S., Prescott S.A., Sejnowski T.J. Cooperativity between remote sites of ectopic spiking allows afterdischarge to be initiated and maintained at different locations. J. Comput. Neurosci. 2015;39:17–28. doi: 10.1007/s10827-015-0562-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> As opposed to more generic forms of hyperexcitability (e.g., increased firing rate or reduced threshold), these specific patterns are limited in terms of the precise mechanisms through which they might arise. Therefore, identifying the ion channel changes underlying those specific forms of hyperexcitability can help constrain the search for ion channel changes responsible for associated, yet less distinctive, forms of hyperexcitability.
I sintomi parossistici caratterizzati dall'insorgenza improvvisa o dall'intensificazione di sintomi come spasmo o dolore lancinante derivano probabilmente dall'AD o da picchi di tipo burst inappropriati. Tali modelli di spiking suggeriscono interazioni altamente non lineari tra le correnti ioniche che contribuiscono <ref name=":9">Coggan J.S., Prescott S.A., Bartol T.M., Sejnowski T.J. Imbalance of ionic conductances contributes to diverse symptoms of demyelination. Proc. Natl. Acad. Sci. USA. 2010;107:20602–20609. doi: 10.1073/pnas.1013798107.[PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref><ref name=":10">Coggan J.S., Ocker G.K., Sejnowski T.J., Prescott S.A. Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models. J. Neural Eng. 2011;8 doi: 10.1088/1741-2560/8/6/065002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> e potrebbero, almeno in teoria, coinvolgere interazioni tra diverse regioni del neurone.<ref name=":11">Coggan J.S., Prescott S.A., Sejnowski T.J. Cooperativity between remote sites of ectopic spiking allows afterdischarge to be initiated and maintained at different locations. J. Comput. Neurosci. 2015;39:17–28. doi: 10.1007/s10827-015-0562-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> A differenza di forme più generiche di ipereccitabilità (ad esempio, aumento della frequenza di scarica o soglia ridotta), questi modelli specifici sono limitati in termini di precisi meccanismi attraverso i quali potrebbero insorgere. Pertanto, l'identificazione dei cambiamenti del canale ionico alla base di quelle specifiche forme di ipereccitabilità può aiutare a limitare la ricerca dei cambiamenti del canale ionico responsabili delle forme associate, ma meno distintive, di ipereccitabilità.


The disruption of energy balance in a neuron could also profoundly impact neuron well-being (Figure 3). Indeed, compensatory changes may manage to restore certain functions but, without reversing the primary problem, other problems may arise. For example, even if conduction block is prevented by an appropriate compensatory change in excitability (i.e., one that does not result in hyperexcitability), the system may be less energy efficient. Losing the energy savings afforded by saltatory conduction induces compensatory mitochondrial energy production that can result in oxidative damage and neurodegeneration.<ref name=":8" /><ref name=":12">Aon M.A., Cortassa S., Akar F.G., Brown D.A., Zhou L., O’Rourke B. From mitochondrial dynamics to arrhythmias. Int. J. Biochem. Cell Biol. 2009;41:1940–1948. doi: 10.1016/j.biocel.2009.02.016. [PMC free article][PubMed] [CrossRef] [Google Scholar]</ref><ref name=":13">Su K., Bourdette D., Forte M. Mitochondrial dysfunction and neurodegeneration in multiple sclerosis. Front. Physiol. 2013;4doi: 10.3389/fphys.2013.00169. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref>
L'interruzione dell'equilibrio energetico in un neurone potrebbe anche avere un impatto profondo sul benessere del neurone (Figura 3). In effetti, le modifiche compensative possono riuscire a ripristinare alcune funzioni ma, senza invertire il problema principale, possono sorgere altri problemi. Ad esempio, anche se il blocco di conduzione è impedito da un'appropriata variazione compensativa dell'eccitabilità (cioè, una che non si traduca in ipereccitabilità), il sistema può essere meno efficiente dal punto di vista energetico. La perdita del risparmio energetico offerto dalla conduzione saltatoria induce una produzione compensativa di energia mitocondriale che può provocare danni ossidativi e neurodegenerazione. <ref name=":8" /><ref name=":12">Aon M.A., Cortassa S., Akar F.G., Brown D.A., Zhou L., O’Rourke B. From mitochondrial dynamics to arrhythmias. Int. J. Biochem. Cell Biol. 2009;41:1940–1948. doi: 10.1016/j.biocel.2009.02.016. [PMC free article][PubMed] [CrossRef] [Google Scholar]</ref><ref name=":13">Su K., Bourdette D., Forte M. Mitochondrial dysfunction and neurodegeneration in multiple sclerosis. Front. Physiol. 2013;4doi: 10.3389/fphys.2013.00169. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref>


Keeping track of this long list of neurobiological changes, understanding the inter-relationships between those changes, and ultimately linking those changes with clinical manifestations and applying effective treatment is no easy task. To this end, computational modeling is an invaluable tool. Simulations not only serve to organize what information is already known, they also identify crucial gaps in knowledge. The judicious use of computational modeling can therefore enable more comprehensive understanding and facilitate the more effective application of that understanding, as discussed below.
Tenere traccia di questo lungo elenco di cambiamenti neurobiologici, comprendere le interrelazioni tra tali cambiamenti e, in definitiva, collegare tali cambiamenti con manifestazioni cliniche e applicare un trattamento efficace non è un compito facile. A tal fine, la modellazione computazionale è uno strumento prezioso. Le simulazioni non solo servono a organizzare le informazioni già note, ma identificano anche lacune cruciali nella conoscenza. L'uso giudizioso della modellazione computazionale può quindi consentire una comprensione più completa e facilitare l'applicazione più efficace di tale comprensione, come discusso di seguito.


=== Computational Modeling ===
=== Modellazione computazionale ===
Especially when paired with traditional experiments, computational modeling is indispensable for making sense of inconsistent data and complex mechanisms. These benefits are exemplified by the application of simulations in other fields, such as epilepsy.<ref>Soltesz I., Staley K.  Computational Neuroscience in Epilepsy. 1st ed. Elsevier; London, UK: 2008.  [Google Scholar]</ref> Here we survey some of the history of computational modeling of axons, ion conductances, the physiology of myelin and demyelination, the immune system, mitochondria and other biological factors that are critical for understanding demyelinating diseases. Our review is not exhaustive but will provide a broad introduction to past, present, and future efforts in this area.
Soprattutto se abbinata agli esperimenti tradizionali, la modellazione computazionale è indispensabile per dare un senso a dati incoerenti e meccanismi complessi. Questi benefici sono esemplificati dall'applicazione di simulazioni in altri campi, come l'epilessia.<ref>Soltesz I., Staley K.  Computational Neuroscience in Epilepsy. 1st ed. Elsevier; London, UK: 2008.  [Google Scholar]</ref> Qui esaminiamo parte della storia della modellazione computazionale di assoni, conduttanze ioniche, fisiologia della mielina e demielinizzazione, sistema immunitario, mitocondri e altri fattori biologici che sono fondamentali per comprendere le malattie demielinizzanti. La nostra recensione non è esaustiva, ma fornirà un'ampia introduzione agli sforzi passati, presenti e futuri in questo settore.


==== Modeling Axons ====
==== Modeling Axons ====
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,490

edits