Rappresentazione scalare dei tracciati condilari
Descrizione delle distanze e delle direzioni
Di seguito sono riportate le distanze calcolate tra i punti rispetto al punto di partenza (punto 1, massima intercuspidazione) considerato punto di riferimento e le relative direzioni nello spazio, utilizzando le coordinate corrette per gli assi
X
{\displaystyle X}
(antero-posteriore) e
Y
{\displaystyle Y}
(latero-mediale).
Calcolo delle distanze tra i punti
Le coordinate dei punti estrapolate da Geogebra dopo calibrazione, per il condilo laterotrusivo, sono:
1L:
(
58.3
,
−
50.9
)
{\displaystyle (58.3,-50.9)}
2L:
(
59
,
−
92.3
)
{\displaystyle (59,-92.3)}
3L:
(
46.3
,
−
169.5
)
{\displaystyle (46.3,-169.5)}
4L:
(
44.1
,
−
207.7
)
{\displaystyle (44.1,-207.7)}
5L:
(
38.4
,
−
136.2
)
{\displaystyle (38.4,-136.2)}
6L:
(
36.4
,
−
48.2
)
{\displaystyle (36.4,-48.2)}
7L:
(
44
,
−
34.9
)
{\displaystyle (44,-34.9)}
8L:
(
52.9
,
−
48
)
{\displaystyle (52.9,-48)}
Fattore di scala:
0.04184
mm/pixel
{\displaystyle 0.04184\,{\text{mm/pixel}}}
Distanze rispetto a
1
L
c
{\displaystyle 1L_{c}}
2
L
c
{\displaystyle 2L_{c}}
d
=
(
59
−
58.3
)
2
+
(
−
92.3
−
(
−
50.9
)
)
2
=
(
0.7
)
2
+
(
−
41.4
)
2
=
0.49
+
1714.36
≈
41.41
pixel
{\displaystyle d={\sqrt {(59-58.3)^{2}+(-92.3-(-50.9))^{2}}}={\sqrt {(0.7)^{2}+(-41.4)^{2}}}={\sqrt {0.49+1714.36}}\approx 41.41\,{\text{pixel}}}
d
=
41.41
⋅
0.04184
≈
1.734
mm
{\displaystyle d=41.41\cdot 0.04184\approx 1.734\,{\text{mm}}}
3
L
c
{\displaystyle 3L_{c}}
d
=
(
46.3
−
58.3
)
2
+
(
−
169.5
−
(
−
50.9
)
)
2
=
(
−
12
)
2
+
(
−
118.6
)
2
=
144
+
14063.96
≈
119.17
pixel
{\displaystyle d={\sqrt {(46.3-58.3)^{2}+(-169.5-(-50.9))^{2}}}={\sqrt {(-12)^{2}+(-118.6)^{2}}}={\sqrt {144+14063.96}}\approx 119.17\,{\text{pixel}}}
d
=
119.17
⋅
0.04184
≈
4.99
mm
{\displaystyle d=119.17\cdot 0.04184\approx 4.99\,{\text{mm}}}
4
L
c
{\displaystyle 4L_{c}}
d
=
(
44.1
−
58.3
)
2
+
(
−
207.7
−
(
−
50.9
)
)
2
=
(
−
14.2
)
2
+
(
−
156.8
)
2
=
201.64
+
24589.44
≈
157.43
pixel
{\displaystyle d={\sqrt {(44.1-58.3)^{2}+(-207.7-(-50.9))^{2}}}={\sqrt {(-14.2)^{2}+(-156.8)^{2}}}={\sqrt {201.64+24589.44}}\approx 157.43\,{\text{pixel}}}
d
=
157.43
⋅
0.04184
≈
6.59
mm
{\displaystyle d=157.43\cdot 0.04184\approx 6.59\,{\text{mm}}}
5
L
c
{\displaystyle 5L_{c}}
d
=
(
38.4
−
58.3
)
2
+
(
−
136.2
−
(
−
50.9
)
)
2
=
(
−
19.9
)
2
+
(
−
85.3
)
2
=
396.01
+
7275.09
≈
87.6
pixel
{\displaystyle d={\sqrt {(38.4-58.3)^{2}+(-136.2-(-50.9))^{2}}}={\sqrt {(-19.9)^{2}+(-85.3)^{2}}}={\sqrt {396.01+7275.09}}\approx 87.6\,{\text{pixel}}}
d
=
87.6
⋅
0.04184
≈
3.66
mm
{\displaystyle d=87.6\cdot 0.04184\approx 3.66\,{\text{mm}}}
6
L
c
{\displaystyle 6L_{c}}
d
=
(
36.4
−
58.3
)
2
+
(
−
48.2
−
(
−
50.9
)
)
2
=
(
−
21.9
)
2
+
(
2.7
)
2
=
479.61
+
7.29
≈
22.06
pixel
{\displaystyle d={\sqrt {(36.4-58.3)^{2}+(-48.2-(-50.9))^{2}}}={\sqrt {(-21.9)^{2}+(2.7)^{2}}}={\sqrt {479.61+7.29}}\approx 22.06\,{\text{pixel}}}
d
=
22.06
⋅
0.04184
≈
0.923
mm
{\displaystyle d=22.06\cdot 0.04184\approx 0.923\,{\text{mm}}}
7
L
c
{\displaystyle 7L_{c}}
d
=
(
44
−
58.3
)
2
+
(
−
34.9
−
(
−
50.9
)
)
2
=
(
−
14.3
)
2
+
(
16
)
2
=
204.49
+
256
≈
21.47
pixel
{\displaystyle d={\sqrt {(44-58.3)^{2}+(-34.9-(-50.9))^{2}}}={\sqrt {(-14.3)^{2}+(16)^{2}}}={\sqrt {204.49+256}}\approx 21.47\,{\text{pixel}}}
d
=
21.47
⋅
0.04184
≈
0.898
mm
{\displaystyle d=21.47\cdot 0.04184\approx 0.898\,{\text{mm}}}
8
L
c
{\displaystyle 8L_{c}}
d
=
(
52.9
−
58.3
)
2
+
(
−
48
−
(
−
50.9
)
)
2
=
(
−
5.4
)
2
+
(
2.9
)
2
=
29.16
+
8.41
≈
6.13
pixel
{\displaystyle d={\sqrt {(52.9-58.3)^{2}+(-48-(-50.9))^{2}}}={\sqrt {(-5.4)^{2}+(2.9)^{2}}}={\sqrt {29.16+8.41}}\approx 6.13\,{\text{pixel}}}
d
=
6.13
⋅
0.04184
≈
0.257
mm
{\displaystyle d=6.13\cdot 0.04184\approx 0.257\,{\text{mm}}}