Go to top

8. Sistemi quantistici aperti: interazione di un biosistema con il suo ambiente

Come già sottolineato, qualsiasi biosistema Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} è fondamentalmente aperto. Pertanto, la dinamica del suo stato deve essere modellata tramite un'interazione con l'ambiente circostante Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon} . Gli stati di Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} e Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon} sono rappresentati negli spazi di Hilbert Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}} e Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}'} . Il sistema composto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S+\varepsilon} è rappresentato negli spazi di Hilbert del prodotto tensoriale Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}\otimes\mathcal{H'} } . Questo sistema è trattato come un sistema isolato e in accordo con la teoria quantistica, la dinamica del suo stato puro può essere descritta dall'equazione di Schrödinger:

  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\tfrac{d}{dt}\Psi(t)=\widehat{H}\Psi(t)(t), \Psi(0)=\Psi_0} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (21)}

dove Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(t)} è lo stato puro del sistema Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S+\varepsilon} e Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\mathcal{H}}} è il suo Hamiltoniano. Questa equazione implica che lo stato puro Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(t)} evolva unitariamente Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(t)=\hat{U}(t)\psi_0} .Qui Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{U}(t)=e^{-it\hat{\mathcal{H}}}} . L'hamiltoniano (generatore di evoluzione) che descrive le interazioni informative ha la forma Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\mathcal{H}}=\hat{\mathcal{H}}_s+\hat{\mathcal{H}}_\varepsilon+{\mathcal{\hat H_{S,\varepsilon}}}} , dove  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\mathcal{H}}_s} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\mathcal{H}}_\varepsilon} sono Hamiltoniani dei sistemi e  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal{\hat H_{S,\varepsilon}}}} è l'Hamiltoniana di interazione.12 Questa equazione implica che l'evoluzione dell'operatore di densità Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\mathcal{R}}(t)} del sistema Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S+\varepsilon} è descritta dall'equazione di von Neumann:

  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tfrac{d\widehat{R}}{dt}(t)=-i[\widehat{H},\widehat{R},(t)], \widehat{R}(0)=\widehat{R}_0} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (22)}

uttavia, lo stato  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\mathcal{R}}(t)} è troppo complesso per qualsiasi analisi matematica: l'ambiente include troppi gradi di libertà. Pertanto, ci interessa solo lo stato di Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} ; la sua dinamica è ottenuta tramite il tracciamento dello stato di  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S+\varepsilon} w.r.t. ed i gradi di libertà di Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon} :

  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{\rho}(t)=Tr_\mathcal{H}\widehat{R}(t)} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (23)}

Generalmente questa equazione, la 'equazione quantistica principale', è matematicamente molto complicata. Nelle applicazioni viene utilizzata una varietà di approssimazioni.

8.1. Modello quantistico di Markov: equazione di Gorini–Kossakowski–Sudarshan–Lindblade

L'approssimazione più semplice dell'equazione master quantistica (23) è la dinamica quantistica di Markov data dall'equazione Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) (Ingarden et al., 1997)[1] (in fisica, è comunemente chiamata semplicemente equazione di Lindblad; questa è l'equazione master quantistica più semplice):

  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tfrac{d\widehat{\rho}}{dt}(t)=-i[\widehat{H},\widehat{\rho},(t)]+ \widehat{L}[\widehat{\rho}(t),\widehat{\rho}(0)=\widehat{\rho}_0} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (24)}

dove l'operatore hermitiano (Hamiltoniano) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{\mathcal{H}}} descrive la dinamica interna di Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} e il superoperatore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{{L}}} , agendo nello spazio degli operatori di densità, descrive un'interazione con l'ambiente Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon} . Questo superoperatore è spesso chiamato Lindbladiano. L'equazione GKSL è un'equazione master quantistica per la dinamica markoviana. In questo articolo non abbiamo la possibilità di spiegare la nozione di markovianità quantistica in modo più dettagliato. L'equazione master quantistica (23) descrive generalmente dinamiche non markoviane.


  1. Ingarden R.S., Kossakowski A., Ohya M. Information Dynamics and Open Systems: Classical and Quantum Approach Kluwer, Dordrecht (1997)