Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, Interface administrators, lookupuser, oversight, Push subscription managers, Suppressors, Administrators, translator, Widget editors
17,894
edits
Gianfranco (talk | contribs) (Created page with "Systèmes complexes") |
Gianfranco (talk | contribs) |
||
(10 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Versions | |||
| en = Complex Systems | |||
| it = Sistemi Complessi | |||
| fr = Systèmes complexes | |||
| de = Komplexe Systeme | |||
| es = Sistemas Complejos | |||
| pt = <!-- portoghese --> | |||
| ru = <!-- russo --> | |||
| pl = <!-- polacco --> | |||
| fi = <!-- finlandese/suomi --> | |||
| ca = <!-- catalano --> | |||
| ja = <!-- giapponese --> | |||
}} | |||
{{Bookind2}} | {{Bookind2}} | ||
Line 9: | Line 24: | ||
{{ArtBy|autore=Gianni Frisardi}} | {{ArtBy|autore=Gianni Frisardi}} | ||
{{Bookind2}} | |||
==Considération préliminaire== | ==Considération préliminaire== | ||
Line 17: | Line 33: | ||
#définir l'unité fondamentale pour l'étude de la connectivité; | #définir l'unité fondamentale pour l'étude de la connectivité; | ||
#séparer la connectivité structurelle de la connectivité fonctionnelle; | #séparer la connectivité structurelle de la connectivité fonctionnelle; | ||
# | #la compréhension des comportements émergents; et | ||
# | #mesurer la connectivité. | ||
Nous devons maintenant considérer le profil complexe de la fonction masticatoire, pour pouvoir parler de "connectivité"<ref>{{cita libro | |||
| autore = Turnbull L | | autore = Turnbull L | ||
| autore2 = Hütt MT | | autore2 = Hütt MT | ||
Line 48: | Line 64: | ||
}}</ref> | }}</ref> | ||
Ce n'est que plus tard que l'importance de la fonction de mastication est devenue évidente en tant que système complexe, en raison de son interaction avec une multitude d'autres centres et systèmes nerveux (SNC), également distants d'un point de vue fonctionnel.<ref>{{cita libro | |||
| autore = Viggiano A | | autore = Viggiano A | ||
| autore2 = Manara R | | autore2 = Manara R | ||
Line 75: | Line 91: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>. | }}</ref>. La fonction de mastication, en effet, a toujours été considérée comme une fonction périphérique et isolée par rapport à la phonétique et à la mastication. Suite à cette interprétation, il y a eu d'innombrables points de vue qui se sont concentrés, et se concentrent encore, sur le diagnostic et la réhabilitation de la mastication exclusivement dans les maxillaires, en excluant toute corrélation multi-structurelle. | ||
Ce type d'approche dénote un "réductionnisme" évident dans le contenu du système lui-même: en biologie, il est plus réaliste de considérer la fonctionnalité de systèmes tels que les "systèmes complexes" qui ne fonctionnent pas de manière linéaire. Ces systèmes utilisent une approche stochastique, dans laquelle l'interaction des différents composants génère un "comportement émergent" (EB)<ref>{{Cite book | |||
| autore = Florio T | | autore = Florio T | ||
| autore2 = Capozzo A | | autore2 = Capozzo A | ||
Line 116: | Line 132: | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> | ||
{{Q2| | {{Q2|Dans cette approche, il ne suffit pas d'analyser un seul élément constitutif pour interpréter l'EB du système : il faut procéder à une analyse intégrée de tous les éléments constitutifs, à la fois dans le temps et dans l'espace. <ref>{{Cite book | ||
| autore = Iyer-Biswas S | | autore = Iyer-Biswas S | ||
| autore2 = Hayot F | | autore2 = Hayot F | ||
Line 136: | Line 152: | ||
}}</ref>}} | }}</ref>}} | ||
Ce résultat paradigmatique renverse la tendance à considérer le système masticatoire comme un simple organe cinématique et va bien au-delà de la procédure mécaniste traditionnelle de la gnathologie classique. | |||
Cet aspect introduit également un type de profil indéterministe des fonctions biologiques, dans lequel la fonction d'un système se présente comme un réseau de multiples éléments liés. | |||
Outre l'interprétation de son état, ce système doit être stimulé de l'extérieur pour analyser la réponse évoquée, comme c'est le cas pour les systèmes indéterministes.<ref>{{Cite book | |||
| autore = Lewis ER | | autore = Lewis ER | ||
| autore2 = MacGregor RJ | | autore2 = MacGregor RJ | ||
Line 158: | Line 174: | ||
}}</ref> | }}</ref> | ||
Il est donc essentiel de passer d'un modèle simple et linéaire de la clinique dentaire à un modèle complexe stochastique de la neurophysiologie masticatoire. | |||
[[File:VEMP.jpg|left|frame|''' | [[File:VEMP.jpg|left|frame|'''Figure 1:''' Tracé EMG représentant un potentiel évoqué vestibulaire enregistré sur les muscles masséters. Notez que p11 et n21 indiquent la latence du potentiel à 11 et 21 ms du stimulus acoustique]] | ||
Pour confirmer cette approche plus complexe et intégrée de l'interprétation des fonctions de la mastication, une étude est présentée ici où le profil d'un "système complexe neuronal" émerge. Dans l'étude mentionnée, la connexion organique et fonctionnelle du système vestibulaire avec le système trigéminal a été analysée. <ref>{{Cite book | |||
| autore = Deriu F | | autore = Deriu F | ||
| autore2 = Ortu E | | autore2 = Ortu E | ||
Line 184: | Line 200: | ||
| OCLC = | | OCLC = | ||
}} | }} | ||
</ref>. | </ref>. Les stimuli acoustiques peuvent provoquer des réponses EMG-réflexes dans le muscle masséter, appelées potentiels myogéniques évoqués vestibulaires (PMVO). Même si ces résultats ont été précédemment attribués à l'activation des récepteurs cochléaires (sons de haute intensité), ceux-ci peuvent également activer les récepteurs vestibulaires. | ||
Comme les études anatomiques et physiologiques, tant chez l'animal que chez l'homme, ont montré que les muscles masséters sont une cible pour les entrées vestibulaires, les auteurs de cette étude ont réévalué la contribution vestibulaire pour les réflexes masséters. | |||
Il s'agit d'un exemple typique de système complexe de base, car il est constitué de deux systèmes nerveux crâniens seulement, mais qui interagissent en activant des circuits mono- et polysynaptiques (Figure 1). | |||
Il serait opportun à ce stade d'introduire quelques sujets liés aux concepts mentionnés ci-dessus, ce qui permettrait de clarifier la raison d'être du projet Masticationpedia. Cela permettrait d'introduire les chapitres qui sont au cœur du projet. | |||
Donc, l'objet est: | |||
{{q2| | {{q2|Mastication and Cognitive Processes, as well as Brainstem and Mastication<br /><small>ils s'étendront à d'autres sujets essentiels, tels que la "segmentation du système nerveux trigéminal" dans le dernier chapitre, "La science extraordinaire".</small>}} | ||
=== | ===La mastication et les processus cognitifs=== | ||
Récemment, la mastication a fait l'objet de discussions sur les effets de maintien et de soutien des performances cognitives. | |||
Une élégante étude réalisée par <sub>f</sub>MR et tomographie par émission de positrons (TEP) a montré que la mastication entraîne une augmentation du flux sanguin cortical et active le cortex somatosensoriel supplémentaire, moteur et insulaire, ainsi que le striatum, le thalamus et le cervelet. | |||
La mastication juste avant d'effectuer une tâche cognitive augmente les niveaux d'oxygène dans le sang (BOLD du signal IRMf) dans le cortex préfrontal et l'hippocampe, des structures importantes impliquées dans l'apprentissage et la mémoire, améliorant ainsi la performance de la tâche.<ref>{{Cite book | |||
| autore = Yamada K | | autore = Yamada K | ||
| autore2 = Park H | | autore2 = Park H | ||
Line 218: | Line 234: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> Des études épidémiologiques antérieures ont montré qu'un nombre restreint de dents résiduelles, l'utilisation incongrue de prothèses et un développement limité de la force mandibulaire sont directement liés au développement de la démence, ce qui renforce l'idée que la mastication contribue au maintien des fonctions cognitives.<ref>{{Cite book | ||
| autore = Kondo K | | autore = Kondo K | ||
| autore2 = Niino M | | autore2 = Niino M | ||
Line 238: | Line 254: | ||
}}</ref>. | }}</ref>. | ||
Une étude récente a apporté de nouvelles preuves de l'interaction entre les processus masticatoires, l'apprentissage et la mémoire, en se concentrant sur la fonction de l'hippocampe qui est essentielle à la formation de nouveaux souvenirs<ref name="MFCF">{{Cite book | |||
| autore = Kubo KY | | autore = Kubo KY | ||
| autore2 = Ichihashi Y | | autore2 = Ichihashi Y | ||
Line 262: | Line 278: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>. | }}</ref>. Une dysharmonie occlusale, telle qu'une perte de dents et une augmentation de la dimension verticale de l'occlusion, entraîne un bruxisme ou une douleur des muscles de mastication et des troubles temporomandibulaires (TMD)<ref>{{Cite book | ||
| autore = Christensen J | | autore = Christensen J | ||
| titolo = Effect of occlusion-raising procedures on the chewing system | | titolo = Effect of occlusion-raising procedures on the chewing system | ||
Line 301: | Line 317: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>. | }}</ref>. Ainsi, pour décrire l'altération de la fonction de l'hippocampe dans une situation de réduction ou de fonction masticatoire anormale, les auteurs ont utilisé un modèle animal (souris) appelé "Molarless Senescence-Accelerated Prone" (SAMP8) afin d'établir un parallélisme avec l'homme. Chez les souris SAMP8, dont l'occlusion a été modifiée, l'augmentation de la dimension verticale occlusale d'environ 0,1 mm avec des matériaux dentaires a montré que la dysharmonie occlusale perturbe l'apprentissage et la mémoire. Ces animaux ont montré un déficit dépendant de l'âge dans l'apprentissage de l'espace à l'eau de Morris. <ref>{{Cite book | ||
| autore = Arakawa Y | | autore = Arakawa Y | ||
| autore2 = Ichihashi Y | | autore2 = Ichihashi Y | ||
Line 347: | Line 363: | ||
}}</ref> | }}</ref> | ||
L'augmentation de la dimension verticale de la morsure chez les souris SAMP8 diminue le nombre de cellules pyramidales<ref name="ODIS" /> et le nombre de leurs épines dendritiques.<ref>{{Cite book | |||
| autore = Kubo KY | | autore = Kubo KY | ||
| autore2 = Kojo A | | autore2 = Kojo A | ||
Line 366: | Line 382: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> Il augmente également l'hypertrophie et l'hyperplasie des protéines fibrillaires des astrocytes dans les régions de l'hippocampe CA1 et CA3.<ref>{{Cite book | ||
| autore = Ichihashi Y | | autore = Ichihashi Y | ||
| autore2 = Saito N | | autore2 = Saito N | ||
Line 389: | Line 405: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>. | }}</ref>. Chez les rongeurs et les singes, les dysharmonies occlusales induites par une augmentation de la dimension verticale avec augmentation de l'acrylique sur les incisives<ref name="ARESO">{{Cite book | ||
| autore = Areso MP | | autore = Areso MP | ||
| autore2 = Giralt MT | | autore2 = Giralt MT | ||
Line 428: | Line 444: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> ou l'insertion du plan de morsure dans la mâchoire sont associées à une augmentation des taux de cortisol urinaire et à des taux plasmatiques élevés de corticostérone, ce qui suggère que la dysharmonie occlusale est également une source de stress. | ||
À l'appui de cette notion, les souris SAMP8 présentant des déficits d'apprentissage montrent une augmentation marquée des niveaux plasmatiques de corticostérone<ref name="ICHI2" /> et sous-régulation du GR et du GRmRNA de l'hippocampe. La dysharmonie occlusale affecte également l'activité catécholaminergique. L'alternance de la fermeture de l'occlusion par l'insertion d'une plaque d'occlusion acrylique sur les incisives inférieures entraîne une augmentation des niveaux de dopamine et de noradrénaline dans l'hypothalamus et le cortex frontal<ref name="ARESO" /><ref>{{Cite book | |||
| autore = Gómez FM | | autore = Gómez FM | ||
| autore2 = Areso MP | | autore2 = Areso MP | ||
Line 450: | Line 466: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>, | }}</ref>, et des diminutions de la thyroxinaydroxylase, du cyclohydrochlorure de GTP et de la sérotonine immunoréactive dans le cortex cérébral et le noyau caudé, dans la substance nigra, dans le locus ceruleus et dans le noyau du raphé dorsal, qui sont similaires aux changements induits par le stress chronique.<ref>{{Cite book | ||
| autore = Feldman S | | autore = Feldman S | ||
| autore2 = Weidenfeld J | | autore2 = Weidenfeld J | ||
Line 467: | Line 483: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> Ces modifications des systèmes catécolaminergique et sérotoninergique, induites par les dysharmonies occlusales, affectent clairement l'innervation de l'hippocampe. Les conditions d'augmentation de la dimension verticale altèrent la neurogenèse et conduisent à l'apoptose dans le gyrus ippocampique en diminuant l'expression du cerveau ippocampique dérivé des facteurs neurotrophiques: tout cela pourrait contribuer aux changements dans l'apprentissage observé chez les animaux présentant une dysharmonie occlusale.<ref name="MFCF" /> | ||
=== | ===Le tronc cérébral et la mastication=== | ||
[[File:Segmentazione Trigeminale.jpg|left|thumb|500px|''' | [[File:Segmentazione Trigeminale.jpg|left|thumb|500px|'''Figure 2:''' Segmentation du système nerveux trigéminal]] | ||
Le district du tronc cérébral est une zone de relais qui relie les centres supérieurs du cerveau, le cervelet et la moelle épinière, et fournit la principale innervation sensorielle et motrice du visage, de la tête et du cou par l'intermédiaire des nerfs crâniens. | |||
Elle joue un rôle déterminant dans la régulation de la respiration, de la locomotion, de la posture, de l'équilibre, de l'excitation (y compris le contrôle intestinal, la vessie, la pression sanguine et le rythme cardiaque). Il est responsable de la régulation de nombreux réflexes, dont la déglutition, la toux et les vomissements. | |||
Le tronc cérébral est contrôlé par les centres cérébraux supérieurs des régions corticales et sous-corticales, y compris les noyaux des ganglions de la base et le diencéphale, ainsi que par les boucles de rétroaction du cervelet et de la moelle épinière. acide aminobutyrique) par une excitation primaire et une inhibition du « réseau anatomique », mais peut également être obtenue par l'utilisation de transmetteurs agissant sur les protéines G. Ces neuromodulateurs comprennent la monoamine (sérotonine, noradrénaline et dopamine) l'acétylcholine, ainsi que le glutamate et GABA. De plus, non seulement les neuropeptides et les purines agissent comme des neuromodulateurs : il en va de même pour d'autres médiateurs chimiques, comme les facteurs de croissance qui pourraient avoir des actions similaires..<ref>{{Cite book | |||
| autore = Mascaro MB | | autore = Mascaro MB | ||
| autore2 = Prosdócimi FC | | autore2 = Prosdócimi FC | ||
Line 494: | Line 512: | ||
}}</ref> | }}</ref> | ||
Le réseau neuronal décrit ci-dessus ne se termine pas par la seule corrélation entre les centres somatosensoriels du trijumeau et d'autres zones motrices, mais s'égare également dans les processus amigdaloïdes par une corrélation avec la zone du tronc cérébral du trijumeauL'amygdale devient active à partir de la peur, jouant un rôle important dans la réponse émotionnelle à situations mettant la vie en danger Lorsque les rats de laboratoire se sentent menacés, ils réagissent en mordant férocement Les projections (ACe) envoient des connexions au noyau moteur trijumeau et à la formation prémotrice réticulaire et directement au Me5. | |||
Pour le confirmer, dans une étude menée chez des souris, les neurones du noyau amigdaloïde central (ACe) ont été marqués après l'injection d'un traceur rétrograde (Fast Blue), dans le noyau caudal du Me5, indiquant que les Amigdaloïdes envoient des projections directes au Me5, et suggèrent que l'amygdale régule la force de la morsure en modifiant l'activité neuronale dans le Me5 par une facilitation neurale.<ref>{{Cite book | |||
| autore = Shirasu M | | autore = Shirasu M | ||
| autore2 = Takahashi T | | autore2 = Takahashi T | ||
Line 517: | Line 535: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> | ||
La modification des rapports occlusaux peut altérer les fonctions somatosensorielles orales et les traitements de rééducation du système masticatoire devraient restaurer les fonctions somatosensorielles. Cependant, on ne sait pas pourquoi certains patients ne s'adaptent pas à la restauration masticatoire, et les troubles sensomoteurs persistent. Au début, il semblerait qu'il s'agisse de changements structurels, pas seulement fonctionnels zone<ref>{{Cite book | |||
| autore = Avivi-Arber L | | autore = Avivi-Arber L | ||
| autore2 = Lee JC | | autore2 = Lee JC | ||
Line 539: | Line 557: | ||
}}</ref> | }}</ref> | ||
== | ==Considérations concluantes== | ||
Ce concept approfondit la connaissance de l'état de santé d'un système car il suscite une réponse de l'intérieur du réseau — ou, du moins, d'une grande partie de celui-ci — en allouant des composantes normales et/ou anormales des différents nœuds du réseau. Sur le plan scientifique, il introduit également un nouveau paradigme dans l'étude du Système Masticatoire : la "Fonction Neuro-Gnathologique", que nous rencontrerons en temps voulu dans le chapitre "Science Extraordinaire". | |||
Actuellement, l'interprétation du comportement émergent du système de mastication en dentisterie est effectuée uniquement en analysant la réponse volontaire de la vallée, à travers des enregistrements électromyographiques «modèle d'interférence EMG», et des tests radiographiques et axographiques (réplicateurs des mouvements mandibulaires). Ceux-ci ne peuvent être considérés que comme des tests descriptifs. | |||
Le paradigme des tests descriptifs gnathologiques a fait face à une crise il y a des années : malgré une tentative de réordonner les différents axiomes, écoles de pensée et rigueur clinico-expérimentale dans le domaine des Troubles temporo-mandibulaires (à travers la réalisation d'un protocole appelé "Critères diagnostiques de recherche" RDC /TMDs), ce paradigme n'est pas encore accepté en raison de l'incomplétude scientifique et clinique de la procédure elle-même. Il mérite cependant une référence particulière au RDC/TMD, du moins pour l'engagement qui a été mené par les auteurs et, en même temps, pour en faire défiler les limites. | |||
Le protocole RDC/TMD a été conçu et initialisé pour éviter la perte de « critères diagnostiques standardisés » et évaluer une standardisation diagnostique des données empiriques à disposition. Ce protocole a été soutenu par le National Institute for Dental Research (NIDR) et mené à l'Université de Washington et au Group Health Corporative de Puget Sound, Seattle, Washington. Samuel F. Dworkin, M. Von Korff et L. LeResche étaient les principaux enquêteurs<ref>{{Cite book | |||
| autore = Dworkin SF | | autore = Dworkin SF | ||
| autore2 = Huggins KH | | autore2 = Huggins KH | ||
Line 557: | Line 572: | ||
| autore6 = Massoth D | | autore6 = Massoth D | ||
| autore7 = LeResche L | | autore7 = LeResche L | ||
| autore8 = Truelove | | autore8 = Truelove Edmond L | ||
| titolo = A randomized clinical trial using research diagnostic criteria for temporomandibular disorders-axis II to target clinic cases for a tailored self-care TMD treatment program | | titolo = A randomized clinical trial using research diagnostic criteria for temporomandibular disorders-axis II to target clinic cases for a tailored self-care TMD treatment program | ||
| url = https://pubmed.ncbi.nlm.nih.gov/11889659/ | | url = https://pubmed.ncbi.nlm.nih.gov/11889659/ | ||
Line 572: | Line 587: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>. | }}</ref>. | ||
Pour arriver à la formulation du protocole du « RDC », une revue de la littérature des méthodes diagnostiques en dentisterie de réhabilitation et des TMD, et soumise à validation et reproductibilité, a été faite. Les systèmes taxonomiques ont été pris en compte par Farrar (1972)<ref>{{Cite book | |||
| autore = Farrar WB | | autore = Farrar WB | ||
| titolo = Differentiation of temporomandibular joint dysfunction to simplify treatment | | titolo = Differentiation of temporomandibular joint dysfunction to simplify treatment | ||
Line 617: | Line 632: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>, Eversole | }}</ref>, Eversole and Machado (1985)<ref>{{Cite book | ||
| autore = Eversole LR | | autore = Eversole LR | ||
| autore2 = Machado L | | autore2 = Machado L | ||
Line 729: | Line 744: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>, Bergamini | }}</ref>, Bergamini and Prayer-Galletti (1990)<ref>{{Cite book | ||
| autore = Prayer Galletti S | | autore = Prayer Galletti S | ||
| autore2 = Colonna MT | | autore2 = Colonna MT | ||
Line 748: | Line 763: | ||
| OCLC = | | OCLC = | ||
}}</ref>, Truelove (1992)<ref>{{Cite book | }}</ref>, Truelove (1992)<ref>{{Cite book | ||
| autore = Truelove | | autore = Truelove Edmond L | ||
| autore2 = Sommers EE | | autore2 = Sommers EE | ||
| autore3 = LeResche L | | autore3 = LeResche L | ||
Line 767: | Line 782: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>, | }}</ref>, et les a comparés en les attribuant à un ensemble de critères d'évaluation. Les critères d'évaluation ont été divisés en deux catégories qui impliquent des considérations méthodologiques et des considérations cliniques. | ||
La fin de la recherche a abouti à l'élimination, faute de validation scientifique et clinique, d'une série de méthodologies de diagnostic instrumental comme l'électromyographie interférentielle (EMG Interference Pattern), la pantographie, le diagnostic par rayons X, etc. Celles-ci seront décrites dans plus de détails dans les prochaines éditions de Masticationpedia. Cette première cible était donc la demande scientifique d'une "donnée objective"' et non générée par des opinions, des écoles de pensée ou des évaluations subjectives du phénomène'. Lors de l'Atelier de l'Association Internationale pour la Recherche Dentaire (IADR) de 2008, les résultats préliminaires des RDC/TMDs ont été présentés dans le but de valider le projet. | |||
La conclusion était que, pour réaliser une revue et une validation simultanée de [RDC/TMD], il est indispensable que les tests puissent faire un diagnostic différentiel entre les patients TMD douloureux et les sujets non douloureux, et surtout discriminer les patients avec douleur TMD de patients souffrant de douleur orofaciale sans TMD.<ref>{{Cite book | |||
| autore = Lobbezoo F | | autore = Lobbezoo F | ||
| autore2 = Visscher CM | | autore2 = Visscher CM | ||
Line 790: | Line 804: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> | ||
Ce dernier article, reconsidérant la douleur comme un symptôme essentiel pour l'interprétation clinique, met en jeu toute la phénoménologie neurophysiologique, et pas seulement celle-ci. Pour se déplacer plus facilement à l'aise dans cette branche médicale, une approche scientifique et clinique différente est requise, qui élargit les horizons de compétence dans des domaines tels que la bioingénierie et la neurobiologie. | |||
Il est donc essentiel de se concentrer sur la façon de prendre des signaux électrophysiologiques du trijumeau en réponse à une série de déclencheurs évoqués par un dispositif électrophysiologique, de traiter les données et de déterminer une valeur organique-fonctionnelle des systèmes trijumeau et masticatoire comme prévu par Marom Bikson et coll. dans leurs. «''[[:File:Electrical stimulation of cranial nerves in cognition and disease.pdf|<span lang="en" dir="ltr" class="mw-content-ltr">Electrical stimulation of cranial nerves in cognition and disease</span>]]''». | |||
Il faudrait penser à un système qui unifie les fonctions masticatrices et neurophysiologiques en introduisant un nouveau terme : "'''Fonctions Neuro-Gnathologiques'''" | |||
{{Bib}} | qui fera l'objet d'un chapitre dédié.{{Bib}} | ||
{{apm}}[[Category:Introduction]] | {{apm}}[[Category:Introduction]] | ||
<onlyinclude> </onlyinclude> | <onlyinclude> </onlyinclude> | ||
[[Category:Source Chapter]] | [[Category:Source Chapter]] |
edits