All public logs

Combined display of all available logs of Masticationpedia. You can narrow down the view by selecting a log type, the username (case-sensitive), or the affected page (also case-sensitive).

Logs
(newest | oldest) View ( | ) (20 | 50 | 100 | 250 | 500)
  • 04:55, 10 November 2022 Gianfranco talk contribs created page Store:QLMit07 (Created page with "===3.3. Non-projective state update: atomic instruments=== In general, the statistical properties of any measurement are characterized by # the output probability distribution <math display="inline">Pr\{\text{x}=x\parallel\rho\}</math>, the probability distribution of the output <math display="inline">x</math> of the measurement in the input state <math display="inline">\rho </math>; # the quantum state reduction <math display="inline">\rho\rightarrow\rho_{(X=x)} </ma...")
  • 04:55, 10 November 2022 Gianfranco talk contribs created page Store:QLMen07 (Created page with "===3.3. Non-projective state update: atomic instruments=== In general, the statistical properties of any measurement are characterized by # the output probability distribution <math display="inline">Pr\{\text{x}=x\parallel\rho\}</math>, the probability distribution of the output <math display="inline">x</math> of the measurement in the input state <math display="inline">\rho </math>; # the quantum state reduction <math display="inline">\rho\rightarrow\rho_{(X=x)} </ma...")
  • 15:51, 9 November 2022 Gianfranco talk contribs created page Store:QLMes06 (Created page with "===3.2. Von Neumann formalism for quantum observables=== In the original quantum formalism (Von Neumann, 1955), physical observable <math>A</math> is represented by a Hermitian operator <math>\hat{A}</math> . We consider only operators with discrete spectra:<math>\hat{A}=\sum_x x\hat{E}^A(x)</math> where <math>\hat{E}^A(x)</math> is the projector onto the subspace of <math display="inline">\mathcal{H}</math>  corresponding to the eigenvalue <math display="inline">x</...")
  • 15:51, 9 November 2022 Gianfranco talk contribs created page Store:QLMde06 (Created page with "===3.2. Von Neumann formalism for quantum observables=== In the original quantum formalism (Von Neumann, 1955), physical observable <math>A</math> is represented by a Hermitian operator <math>\hat{A}</math> . We consider only operators with discrete spectra:<math>\hat{A}=\sum_x x\hat{E}^A(x)</math> where <math>\hat{E}^A(x)</math> is the projector onto the subspace of <math display="inline">\mathcal{H}</math>  corresponding to the eigenvalue <math display="inline">x</...")
  • 15:50, 9 November 2022 Gianfranco talk contribs created page Store:QLMfr06 (Created page with "===3.2. Von Neumann formalism for quantum observables=== In the original quantum formalism (Von Neumann, 1955), physical observable <math>A</math> is represented by a Hermitian operator <math>\hat{A}</math> . We consider only operators with discrete spectra:<math>\hat{A}=\sum_x x\hat{E}^A(x)</math> where <math>\hat{E}^A(x)</math> is the projector onto the subspace of <math display="inline">\mathcal{H}</math>  corresponding to the eigenvalue <math display="inline">x</...")
  • 15:50, 9 November 2022 Gianfranco talk contribs created page Store:QLMit06 (Created page with "===3.2. Von Neumann formalism for quantum observables=== In the original quantum formalism (Von Neumann, 1955), physical observable <math>A</math> is represented by a Hermitian operator <math>\hat{A}</math> . We consider only operators with discrete spectra:<math>\hat{A}=\sum_x x\hat{E}^A(x)</math> where <math>\hat{E}^A(x)</math> is the projector onto the subspace of <math display="inline">\mathcal{H}</math>  corresponding to the eigenvalue <math display="inline">x</...")
  • 15:50, 9 November 2022 Gianfranco talk contribs created page Store:QLMen06 (Created page with "===3.2. Von Neumann formalism for quantum observables=== In the original quantum formalism (Von Neumann, 1955), physical observable <math>A</math> is represented by a Hermitian operator <math>\hat{A}</math> . We consider only operators with discrete spectra:<math>\hat{A}=\sum_x x\hat{E}^A(x)</math> where <math>\hat{E}^A(x)</math> is the projector onto the subspace of <math display="inline">\mathcal{H}</math>  corresponding to the eigenvalue <math display="inline">x</...")
  • 15:49, 9 November 2022 Gianfranco talk contribs created page Store:QLMes05 (Created page with "==3. Quantum instruments== ===3.1. A few words about the quantum formalism=== Denote by  <math display="inline">\mathcal{H}</math> a complex Hilbert space. For simplicity, we assume that it is finite dimensional. Pure states of a system <math>S</math> are given by normalized vectors of  <math display="inline">\mathcal{H}</math> and mixed states by density operators (positive semi-definite operators with unit trace). The space of density operators is denoted by <math>S...")
  • 15:49, 9 November 2022 Gianfranco talk contribs created page Store:QLMfr05 (Created page with "==3. Quantum instruments== ===3.1. A few words about the quantum formalism=== Denote by  <math display="inline">\mathcal{H}</math> a complex Hilbert space. For simplicity, we assume that it is finite dimensional. Pure states of a system <math>S</math> are given by normalized vectors of  <math display="inline">\mathcal{H}</math> and mixed states by density operators (positive semi-definite operators with unit trace). The space of density operators is denoted by <math>S...")
  • 15:49, 9 November 2022 Gianfranco talk contribs created page Store:QLMde05 (Created page with "==3. Quantum instruments== ===3.1. A few words about the quantum formalism=== Denote by  <math display="inline">\mathcal{H}</math> a complex Hilbert space. For simplicity, we assume that it is finite dimensional. Pure states of a system <math>S</math> are given by normalized vectors of  <math display="inline">\mathcal{H}</math> and mixed states by density operators (positive semi-definite operators with unit trace). The space of density operators is denoted by <math>S...")
  • 15:49, 9 November 2022 Gianfranco talk contribs created page Store:QLMit05 (Created page with "==3. Quantum instruments== ===3.1. A few words about the quantum formalism=== Denote by  <math display="inline">\mathcal{H}</math> a complex Hilbert space. For simplicity, we assume that it is finite dimensional. Pure states of a system <math>S</math> are given by normalized vectors of  <math display="inline">\mathcal{H}</math> and mixed states by density operators (positive semi-definite operators with unit trace). The space of density operators is denoted by <math>S...")
  • 15:48, 9 November 2022 Gianfranco talk contribs created page Store:QLMen05 (Created page with "==3. Quantum instruments== ===3.1. A few words about the quantum formalism=== Denote by  <math display="inline">\mathcal{H}</math> a complex Hilbert space. For simplicity, we assume that it is finite dimensional. Pure states of a system <math>S</math> are given by normalized vectors of  <math display="inline">\mathcal{H}</math> and mixed states by density operators (positive semi-definite operators with unit trace). The space of density operators is denoted by <math>S...")
  • 15:48, 9 November 2022 Gianfranco talk contribs created page Store:QLMes04 (Created page with "==2. Classical versus quantum probability== CP was mathematically formalized by Kolmogorov (1933)<ref name=":2" /> This is the calculus of probability measures, where a non-negative weight <math>p(A)</math> is assigned to any event <math>A</math>. The main property of CP is its additivity: if two events <math>O_1, O_2</math> are disjoint, then the probability of disjunction of these events equals to the sum of probabilities: {| width="80%" | |- | width="33%" | ...")
  • 15:47, 9 November 2022 Gianfranco talk contribs created page Store:QLMde04 (Created page with "==2. Classical versus quantum probability== CP was mathematically formalized by Kolmogorov (1933)<ref name=":2" /> This is the calculus of probability measures, where a non-negative weight <math>p(A)</math> is assigned to any event <math>A</math>. The main property of CP is its additivity: if two events <math>O_1, O_2</math> are disjoint, then the probability of disjunction of these events equals to the sum of probabilities: {| width="80%" | |- | width="33%" | ...")
  • 15:47, 9 November 2022 Gianfranco talk contribs created page Store:QLMit04 (Created page with "==2. Classical versus quantum probability== CP was mathematically formalized by Kolmogorov (1933)<ref name=":2" /> This is the calculus of probability measures, where a non-negative weight <math>p(A)</math> is assigned to any event <math>A</math>. The main property of CP is its additivity: if two events <math>O_1, O_2</math> are disjoint, then the probability of disjunction of these events equals to the sum of probabilities: {| width="80%" | |- | width="33%" | ...")
  • 15:47, 9 November 2022 Gianfranco talk contribs created page Store:QLMen04 (Created page with "==2. Classical versus quantum probability== CP was mathematically formalized by Kolmogorov (1933)<ref name=":2" /> This is the calculus of probability measures, where a non-negative weight <math>p(A)</math> is assigned to any event <math>A</math>. The main property of CP is its additivity: if two events <math>O_1, O_2</math> are disjoint, then the probability of disjunction of these events equals to the sum of probabilities: {| width="80%" | |- | width="33%" | ...")
  • 15:46, 9 November 2022 Gianfranco talk contribs created page Store:QLMes03 (Created page with "===Observations=== In textbooks on quantum mechanics, it is commonly pointed out that the main distinguishing feature of quantum theory is the presence of ''incompatible observables.'' We recall that two observables <math>A</math> <math>B</math> and  are incompatible if it is impossible to assign values to them jointly. In the probabilistic model, this leads to impossibility to determine their joint probability distribution (JPD). The basic examples of incompatible obse...")
  • 15:46, 9 November 2022 Gianfranco talk contribs created page Store:QLMde03 (Created page with "===Observations=== In textbooks on quantum mechanics, it is commonly pointed out that the main distinguishing feature of quantum theory is the presence of ''incompatible observables.'' We recall that two observables <math>A</math> <math>B</math> and  are incompatible if it is impossible to assign values to them jointly. In the probabilistic model, this leads to impossibility to determine their joint probability distribution (JPD). The basic examples of incompatible obse...")
  • 15:46, 9 November 2022 Gianfranco talk contribs created page Store:QLMfr03 (Created page with "===Observations=== In textbooks on quantum mechanics, it is commonly pointed out that the main distinguishing feature of quantum theory is the presence of ''incompatible observables.'' We recall that two observables <math>A</math> <math>B</math> and  are incompatible if it is impossible to assign values to them jointly. In the probabilistic model, this leads to impossibility to determine their joint probability distribution (JPD). The basic examples of incompatible obse...")
  • 15:46, 9 November 2022 Gianfranco talk contribs created page Store:QLMit03 (Created page with "===Observations=== In textbooks on quantum mechanics, it is commonly pointed out that the main distinguishing feature of quantum theory is the presence of ''incompatible observables.'' We recall that two observables <math>A</math> <math>B</math> and  are incompatible if it is impossible to assign values to them jointly. In the probabilistic model, this leads to impossibility to determine their joint probability distribution (JPD). The basic examples of incompatible obse...")
  • 15:46, 9 November 2022 Gianfranco talk contribs created page Store:QLMen03 (Created page with "===Observations=== In textbooks on quantum mechanics, it is commonly pointed out that the main distinguishing feature of quantum theory is the presence of ''incompatible observables.'' We recall that two observables <math>A</math> <math>B</math> and  are incompatible if it is impossible to assign values to them jointly. In the probabilistic model, this leads to impossibility to determine their joint probability distribution (JPD). The basic examples of incompatible obse...")
  • 15:45, 9 November 2022 Gianfranco talk contribs created page Store:QLMit02 (Created page with "== Introduction == The standard mathematical methods were originally developed to serve classical physics. The real analysis served as the mathematical basis of Newtonian mechanics (Newton, 1687)<ref>{{cita libro | autore = Newton Isaac | titolo = Philosophiae naturalis principia mathematica | url = https://archive.org/details/bub_gb_6EqxPav3vIsC | volume = | opera = | anno = 1687 | editore = Benjamin Motte | città = London UK | ISBN = | DOI = | PMID =...")
  • 15:45, 9 November 2022 Gianfranco talk contribs created page Store:QLMes02 (Created page with "== Introduction == The standard mathematical methods were originally developed to serve classical physics. The real analysis served as the mathematical basis of Newtonian mechanics (Newton, 1687)<ref>{{cita libro | autore = Newton Isaac | titolo = Philosophiae naturalis principia mathematica | url = https://archive.org/details/bub_gb_6EqxPav3vIsC | volume = | opera = | anno = 1687 | editore = Benjamin Motte | città = London UK | ISBN = | DOI = | PMID =...")
  • 15:44, 9 November 2022 Gianfranco talk contribs created page Store:QLMde02 (Created page with "== Introduction == The standard mathematical methods were originally developed to serve classical physics. The real analysis served as the mathematical basis of Newtonian mechanics (Newton, 1687)<ref>{{cita libro | autore = Newton Isaac | titolo = Philosophiae naturalis principia mathematica | url = https://archive.org/details/bub_gb_6EqxPav3vIsC | volume = | opera = | anno = 1687 | editore = Benjamin Motte | città = London UK | ISBN = | DOI = | PMID =...")
  • 15:44, 9 November 2022 Gianfranco talk contribs created page Store:QLMfr02 (Created page with "== Introduction == The standard mathematical methods were originally developed to serve classical physics. The real analysis served as the mathematical basis of Newtonian mechanics (Newton, 1687)<ref>{{cita libro | autore = Newton Isaac | titolo = Philosophiae naturalis principia mathematica | url = https://archive.org/details/bub_gb_6EqxPav3vIsC | volume = | opera = | anno = 1687 | editore = Benjamin Motte | città = London UK | ISBN = | DOI = | PMID =...")
  • 15:44, 9 November 2022 Gianfranco talk contribs created page Store:QLMen02 (Created page with "== Introduction == The standard mathematical methods were originally developed to serve classical physics. The real analysis served as the mathematical basis of Newtonian mechanics (Newton, 1687)<ref>{{cita libro | autore = Newton Isaac | titolo = Philosophiae naturalis principia mathematica | url = https://archive.org/details/bub_gb_6EqxPav3vIsC | volume = | opera = | anno = 1687 | editore = Benjamin Motte | città = London UK | ISBN = | DOI = | PMID =...")
  • 15:42, 9 November 2022 Gianfranco talk contribs created page Store:QLMes01 (Created page with "== Abstract == We present the novel approach to mathematical modeling of information processes in biosystems. It explores the mathematical formalism and methodology of quantum theory, especially quantum measurement theory. This approach is known as ''quantum-like'' and it should be distinguished from study of genuine quantum physical processes in biosystems (quantum biophysics, quantum cognition). It is based on quantum information representation of biosystem’s state a...")
  • 15:42, 9 November 2022 Gianfranco talk contribs created page Store:QLMde01 (Created page with "== Abstract == We present the novel approach to mathematical modeling of information processes in biosystems. It explores the mathematical formalism and methodology of quantum theory, especially quantum measurement theory. This approach is known as ''quantum-like'' and it should be distinguished from study of genuine quantum physical processes in biosystems (quantum biophysics, quantum cognition). It is based on quantum information representation of biosystem’s state a...")
  • 15:42, 9 November 2022 Gianfranco talk contribs created page Store:QLMfr01 (Created page with "== Abstract == We present the novel approach to mathematical modeling of information processes in biosystems. It explores the mathematical formalism and methodology of quantum theory, especially quantum measurement theory. This approach is known as ''quantum-like'' and it should be distinguished from study of genuine quantum physical processes in biosystems (quantum biophysics, quantum cognition). It is based on quantum information representation of biosystem’s state a...")
  • 15:42, 9 November 2022 Gianfranco talk contribs created page Store:QLMit01 (Created page with "== Abstract == We present the novel approach to mathematical modeling of information processes in biosystems. It explores the mathematical formalism and methodology of quantum theory, especially quantum measurement theory. This approach is known as ''quantum-like'' and it should be distinguished from study of genuine quantum physical processes in biosystems (quantum biophysics, quantum cognition). It is based on quantum information representation of biosystem’s state a...")
  • 15:42, 9 November 2022 Gianfranco talk contribs created page Store:QLMen01 (Created page with "== Abstract == We present the novel approach to mathematical modeling of information processes in biosystems. It explores the mathematical formalism and methodology of quantum theory, especially quantum measurement theory. This approach is known as ''quantum-like'' and it should be distinguished from study of genuine quantum physical processes in biosystems (quantum biophysics, quantum cognition). It is based on quantum information representation of biosystem’s state a...")
  • 19:33, 7 November 2022 Gianni talk contribs created page File:Exploring EEG .jpeg
  • 19:33, 7 November 2022 Gianni talk contribs uploaded File:Exploring EEG .jpeg
  • 10:51, 5 November 2022 Gianfranco talk contribs created page Store:EEMIes12 (Created page with "== Acknowledgements== We would like to thank Silvano Petrarca for his continued assistance in devising the model. This study was funded by the NSERC Discovery Grant (05578–2014RGPIN), CERC (215063), CIHR Foundation Fund (167264). AMO is a Fellow of the CIFAR Brain, Mind, and Consciousness Program. == Author contributions== N.J.M.P., C.M. and G.L. performed the analysis. A.S., B.S. and N.J.M.P. developed the model. A.S. and B.S. supervised the analysis. N.J.M.P., A.S....")
  • 10:51, 5 November 2022 Gianfranco talk contribs created page Store:EEMIde12 (Created page with "== Acknowledgements== We would like to thank Silvano Petrarca for his continued assistance in devising the model. This study was funded by the NSERC Discovery Grant (05578–2014RGPIN), CERC (215063), CIHR Foundation Fund (167264). AMO is a Fellow of the CIFAR Brain, Mind, and Consciousness Program. == Author contributions== N.J.M.P., C.M. and G.L. performed the analysis. A.S., B.S. and N.J.M.P. developed the model. A.S. and B.S. supervised the analysis. N.J.M.P., A.S....")
  • 10:50, 5 November 2022 Gianfranco talk contribs created page Store:EEMIfr12 (Created page with "== Acknowledgements== We would like to thank Silvano Petrarca for his continued assistance in devising the model. This study was funded by the NSERC Discovery Grant (05578–2014RGPIN), CERC (215063), CIHR Foundation Fund (167264). AMO is a Fellow of the CIFAR Brain, Mind, and Consciousness Program. == Author contributions== N.J.M.P., C.M. and G.L. performed the analysis. A.S., B.S. and N.J.M.P. developed the model. A.S. and B.S. supervised the analysis. N.J.M.P., A.S....")
  • 10:50, 5 November 2022 Gianfranco talk contribs created page Store:EEMIit12 (Created page with "== Acknowledgements== We would like to thank Silvano Petrarca for his continued assistance in devising the model. This study was funded by the NSERC Discovery Grant (05578–2014RGPIN), CERC (215063), CIHR Foundation Fund (167264). AMO is a Fellow of the CIFAR Brain, Mind, and Consciousness Program. == Author contributions== N.J.M.P., C.M. and G.L. performed the analysis. A.S., B.S. and N.J.M.P. developed the model. A.S. and B.S. supervised the analysis. N.J.M.P., A.S....")
  • 10:50, 5 November 2022 Gianfranco talk contribs created page Store:EEMIen12 (Created page with "== Acknowledgements== We would like to thank Silvano Petrarca for his continued assistance in devising the model. This study was funded by the NSERC Discovery Grant (05578–2014RGPIN), CERC (215063), CIHR Foundation Fund (167264). AMO is a Fellow of the CIFAR Brain, Mind, and Consciousness Program. == Author contributions== N.J.M.P., C.M. and G.L. performed the analysis. A.S., B.S. and N.J.M.P. developed the model. A.S. and B.S. supervised the analysis. N.J.M.P., A.S....")
  • 10:49, 5 November 2022 Gianfranco talk contribs created page Store:EEMIes11 (Created page with "== Model == Each of the j electrodes is described by an ordered pair (<math>x_j,y_j,z_j</math>) in 3-dimensional space. To complete this analysis, the electrodes were first projected onto the (<math>x,y</math>) plane, removing the depth of the head. Figure 1A shows the locations of each electrode in this 2d-space. Following this projection, the time courses for each of the 92 electrodes were Hilbert transformed and then normalized following the procedure listed using Eq...")
  • 10:49, 5 November 2022 Gianfranco talk contribs created page Store:EEMIde11 (Created page with "== Model == Each of the j electrodes is described by an ordered pair (<math>x_j,y_j,z_j</math>) in 3-dimensional space. To complete this analysis, the electrodes were first projected onto the (<math>x,y</math>) plane, removing the depth of the head. Figure 1A shows the locations of each electrode in this 2d-space. Following this projection, the time courses for each of the 92 electrodes were Hilbert transformed and then normalized following the procedure listed using Eq...")
  • 10:49, 5 November 2022 Gianfranco talk contribs created page Store:EEMIfr11 (Created page with "== Model == Each of the j electrodes is described by an ordered pair (<math>x_j,y_j,z_j</math>) in 3-dimensional space. To complete this analysis, the electrodes were first projected onto the (<math>x,y</math>) plane, removing the depth of the head. Figure 1A shows the locations of each electrode in this 2d-space. Following this projection, the time courses for each of the 92 electrodes were Hilbert transformed and then normalized following the procedure listed using Eq...")
  • 10:48, 5 November 2022 Gianfranco talk contribs created page Store:EEMIit11 (Created page with "== Model == Each of the j electrodes is described by an ordered pair (<math>x_j,y_j,z_j</math>) in 3-dimensional space. To complete this analysis, the electrodes were first projected onto the (<math>x,y</math>) plane, removing the depth of the head. Figure 1A shows the locations of each electrode in this 2d-space. Following this projection, the time courses for each of the 92 electrodes were Hilbert transformed and then normalized following the procedure listed using Eq...")
  • 10:48, 5 November 2022 Gianfranco talk contribs created page Store:EEMIen11 (Created page with "== Model == Each of the j electrodes is described by an ordered pair (<math>x_j,y_j,z_j</math>) in 3-dimensional space. To complete this analysis, the electrodes were first projected onto the (<math>x,y</math>) plane, removing the depth of the head. Figure 1A shows the locations of each electrode in this 2d-space. Following this projection, the time courses for each of the 92 electrodes were Hilbert transformed and then normalized following the procedure listed using Eq...")
  • 10:47, 5 November 2022 Gianfranco talk contribs created page Store:EEMIes10 (Created page with "== Methods== === Data acquisition=== Twenty-eight healthy subjects were recruited from The Brain and Mind Institute at the University of Western Ontario, Canada to participate in this study. Informed written consent was acquired prior to testing from all participants. Ethics approval for this study was granted by the Health Sciences Research Ethics Board and the Non-Medical Research Ethics Board of The University of Western Ontario and all research was performed in acco...")
  • 10:47, 5 November 2022 Gianfranco talk contribs created page Store:EEMIde10 (Created page with "== Methods== === Data acquisition=== Twenty-eight healthy subjects were recruited from The Brain and Mind Institute at the University of Western Ontario, Canada to participate in this study. Informed written consent was acquired prior to testing from all participants. Ethics approval for this study was granted by the Health Sciences Research Ethics Board and the Non-Medical Research Ethics Board of The University of Western Ontario and all research was performed in acco...")
  • 10:47, 5 November 2022 Gianfranco talk contribs created page Store:EEMIfr10 (Created page with "== Methods== === Data acquisition=== Twenty-eight healthy subjects were recruited from The Brain and Mind Institute at the University of Western Ontario, Canada to participate in this study. Informed written consent was acquired prior to testing from all participants. Ethics approval for this study was granted by the Health Sciences Research Ethics Board and the Non-Medical Research Ethics Board of The University of Western Ontario and all research was performed in acco...")
  • 10:47, 5 November 2022 Gianfranco talk contribs created page Store:EEMIit10 (Created page with "== Methods== === Data acquisition=== Twenty-eight healthy subjects were recruited from The Brain and Mind Institute at the University of Western Ontario, Canada to participate in this study. Informed written consent was acquired prior to testing from all participants. Ethics approval for this study was granted by the Health Sciences Research Ethics Board and the Non-Medical Research Ethics Board of The University of Western Ontario and all research was performed in acco...")
  • 10:46, 5 November 2022 Gianfranco talk contribs created page Store:EEMIen10 (Created page with "== Methods== === Data acquisition=== Twenty-eight healthy subjects were recruited from The Brain and Mind Institute at the University of Western Ontario, Canada to participate in this study. Informed written consent was acquired prior to testing from all participants. Ethics approval for this study was granted by the Health Sciences Research Ethics Board and the Non-Medical Research Ethics Board of The University of Western Ontario and all research was performed in acco...")
  • 10:46, 5 November 2022 Gianfranco talk contribs created page Store:EEMIes09 (Created page with "==== Discussion ==== In the current study, we investigated the spatial-extent and the associated transitional properties of neural activity in the brain during active and resting conditions, and whether similar underlying network properties exist. We found that applying the Hilbert transformation to the EEG data and normalizing it (Eq. 2) imposes a probabilistic structure to the EEG signal across the brain (Eq. 3), which we used to identify probability of spatial patter...")
  • 10:46, 5 November 2022 Gianfranco talk contribs created page Store:EEMIde09 (Created page with "==== Discussion ==== In the current study, we investigated the spatial-extent and the associated transitional properties of neural activity in the brain during active and resting conditions, and whether similar underlying network properties exist. We found that applying the Hilbert transformation to the EEG data and normalizing it (Eq. 2) imposes a probabilistic structure to the EEG signal across the brain (Eq. 3), which we used to identify probability of spatial patter...")
(newest | oldest) View ( | ) (20 | 50 | 100 | 250 | 500)